ribesstefano/RuleBert-v0.5-k4
This model is a fine-tuned version of papluca/xlm-roberta-base-language-detection on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3453
- F1: 0.4844
- Roc Auc: 0.6643
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 8000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.395 | 0.06 | 250 | 0.3865 | 0.4840 | 0.6680 | 0.0 |
0.3437 | 0.12 | 500 | 0.3491 | 0.4946 | 0.6709 | 0.0 |
0.3545 | 0.18 | 750 | 0.3428 | 0.5085 | 0.6791 | 0.0 |
0.3292 | 0.24 | 1000 | 0.3411 | 0.4865 | 0.6653 | 0.0 |
0.3362 | 0.3 | 1250 | 0.3426 | 0.4851 | 0.6645 | 0.0 |
0.3404 | 0.36 | 1500 | 0.3432 | 0.4889 | 0.6684 | 0.0 |
0.3271 | 0.42 | 1750 | 0.3424 | 0.4887 | 0.6668 | 0.0 |
0.3458 | 0.48 | 2000 | 0.3453 | 0.4844 | 0.6643 | 0.0 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 95
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ribesstefano/RuleBert-v0.5-k4
Base model
FacebookAI/xlm-roberta-base