SentenceTransformer based on FacebookAI/roberta-large-mnli
This is a sentence-transformers model finetuned from FacebookAI/roberta-large-mnli. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-large-mnli
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_facebook_large_mnli_openVino2")
# Run inference
sentences = [
'A motorbike rider is barreling across a grass lawn.',
'The rider is outdoors on a motorbike.',
'The girl is wearing a shirt.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8457 |
spearman_cosine | 0.8101 |
pearson_manhattan | 0.8108 |
spearman_manhattan | 0.7917 |
pearson_euclidean | 0.8106 |
spearman_euclidean | 0.7916 |
pearson_dot | 0.8567 |
spearman_dot | 0.8163 |
pearson_max | 0.8567 |
spearman_max | 0.8163 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 72,338 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 5 tokens
- mean: 18.11 tokens
- max: 82 tokens
- min: 5 tokens
- mean: 12.82 tokens
- max: 65 tokens
- 0: ~50.70%
- 1: ~49.30%
- Samples:
sentence_0 sentence_1 label Hows would you create strategies and tactics in various combat situations?
I have girlfriend and their parents accepted for my marriage, I m working in Nagpur but her parents wanted me to shift Bangalore? Is it valid wish?
0
Man from the army speaking with civilian women.
The man is a sergeant
0
An old man with a white shirt and black pants sits on a chair in the opening of a stone tunnel.
Someone has black pants.
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | eval_spearman_max |
---|---|---|---|
0.1106 | 500 | 0.1845 | 0.6681 |
0.2211 | 1000 | 0.0942 | 0.7711 |
0.3317 | 1500 | 0.0821 | 0.6355 |
0.4423 | 2000 | 0.0794 | 0.7283 |
0.5529 | 2500 | 0.0788 | 0.7129 |
0.6634 | 3000 | 0.0737 | 0.7853 |
0.7740 | 3500 | 0.07 | 0.7013 |
0.8846 | 4000 | 0.0686 | 0.7809 |
0.9951 | 4500 | 0.0683 | 0.7578 |
1.0 | 4522 | - | 0.7976 |
1.1057 | 5000 | 0.07 | 0.7749 |
1.2163 | 5500 | 0.0656 | 0.7826 |
1.3268 | 6000 | 0.0587 | 0.8032 |
1.4374 | 6500 | 0.0584 | 0.7666 |
1.5480 | 7000 | 0.0582 | 0.7917 |
1.6586 | 7500 | 0.0546 | 0.7945 |
1.7691 | 8000 | 0.0528 | 0.7786 |
1.8797 | 8500 | 0.051 | 0.7732 |
1.9903 | 9000 | 0.0527 | 0.7996 |
2.0 | 9044 | - | 0.7898 |
2.1008 | 9500 | 0.0509 | 0.7957 |
2.2114 | 10000 | 0.0492 | 0.7988 |
2.3220 | 10500 | 0.0451 | 0.8044 |
2.4326 | 11000 | 0.0443 | 0.7961 |
2.5431 | 11500 | 0.0445 | 0.7975 |
2.6537 | 12000 | 0.0433 | 0.8054 |
2.7643 | 12500 | 0.0394 | 0.7890 |
2.8748 | 13000 | 0.0387 | 0.8020 |
2.9854 | 13500 | 0.0401 | 0.8096 |
3.0 | 13566 | - | 0.8087 |
3.0960 | 14000 | 0.0399 | 0.8098 |
3.2065 | 14500 | 0.039 | 0.8077 |
3.3171 | 15000 | 0.0346 | 0.8021 |
3.4277 | 15500 | 0.0339 | 0.8082 |
3.5383 | 16000 | 0.0347 | 0.8150 |
3.6488 | 16500 | 0.0352 | 0.8144 |
3.7594 | 17000 | 0.032 | 0.8141 |
3.8700 | 17500 | 0.0326 | 0.8151 |
3.9805 | 18000 | 0.0318 | 0.8162 |
4.0 | 18088 | - | 0.8163 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for richie-ghost/sbert_facebook_large_mnli_openVino2
Base model
FacebookAI/roberta-large-mnliEvaluation results
- Pearson Cosine on evalself-reported0.846
- Spearman Cosine on evalself-reported0.810
- Pearson Manhattan on evalself-reported0.811
- Spearman Manhattan on evalself-reported0.792
- Pearson Euclidean on evalself-reported0.811
- Spearman Euclidean on evalself-reported0.792
- Pearson Dot on evalself-reported0.857
- Spearman Dot on evalself-reported0.816
- Pearson Max on evalself-reported0.857
- Spearman Max on evalself-reported0.816