File size: 18,510 Bytes
c59b096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
---
base_model: cross-encoder/nli-deberta-v3-large
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:40338
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '"Rumpelstilsken, I command the sun to set!"  He seemed to sense
    a hesitation in his mind, and then the impression of jeweled gears turning.'
  sentences:
  - A football game is playing.
  - He sensed hesitation when commanding Rumpelstiltskin.
  - I ran and he saw me immediately.
- source_sentence: A woman wears sunglasses and a black coat as she walks.
  sentences:
  - The lady in black walks while wearing her shades.
  - Two women were walking
  - The people are running towards the mountains.
- source_sentence: The Congress relies on GAO to examine virtually every federal program,
    activity, and policy, as well as institutions that rely on federal funds.
  sentences:
  - The men are standing in line at the restaurant.
  - GAO helps Congress.
  - Tide permitting, view the shrine from its base to appreciate its full size.
- source_sentence: The resort was named after Louis James Fraser, an English adventurer
    and scoundrel, who dealt in mule hides, tin, opium, and gambling.
  sentences:
  - A man in front of people.
  - The resort was named after an English adventurer and scoundrel.
  - A woman is holding flowers by two men on a bench.
- source_sentence: Three men riding a bicycle, tow of them are wearing a helmet.
  sentences:
  - Accountability measures help establish the financial condition of the government.
  - A man is pushing a truck.
  - There are at least two helmets.
model-index:
- name: SentenceTransformer based on cross-encoder/nli-deberta-v3-large
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: eval
      type: eval
    metrics:
    - type: cosine_accuracy@1
      value: 0.0003470672814715653
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2842728940453171
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.42875204521790866
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5317318657345431
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.0003470672814715653
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09475763134843902
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08575040904358174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.053173186573454316
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0003470672814715653
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2842728940453171
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.42875204521790866
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5317318657345431
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2599623819220365
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.17320152646642903
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.1849889511878054
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.003718578015766771
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.262531607913134
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.40182954038375723
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.5089741682780504
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.003718578015766771
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.08751053597104465
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.08036590807675144
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.050897416827805034
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.003718578015766771
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.262531607913134
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.40182954038375723
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5089741682780504
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.24760156704826422
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.16454750021051548
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.17684391661589097
      name: Dot Map@100
---

# SentenceTransformer based on cross-encoder/nli-deberta-v3-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large) <!-- at revision 52fab31a566138fbd1f6833a4efc1199f875f05e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large")
# Run inference
sentences = [
    'Three men riding a bicycle, tow of them are wearing a helmet.',
    'There are at least two helmets.',
    'Accountability measures help establish the financial condition of the government.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.0003    |
| cosine_accuracy@3   | 0.2843    |
| cosine_accuracy@5   | 0.4288    |
| cosine_accuracy@10  | 0.5317    |
| cosine_precision@1  | 0.0003    |
| cosine_precision@3  | 0.0948    |
| cosine_precision@5  | 0.0858    |
| cosine_precision@10 | 0.0532    |
| cosine_recall@1     | 0.0003    |
| cosine_recall@3     | 0.2843    |
| cosine_recall@5     | 0.4288    |
| cosine_recall@10    | 0.5317    |
| cosine_ndcg@10      | 0.26      |
| cosine_mrr@10       | 0.1732    |
| **cosine_map@100**  | **0.185** |
| dot_accuracy@1      | 0.0037    |
| dot_accuracy@3      | 0.2625    |
| dot_accuracy@5      | 0.4018    |
| dot_accuracy@10     | 0.509     |
| dot_precision@1     | 0.0037    |
| dot_precision@3     | 0.0875    |
| dot_precision@5     | 0.0804    |
| dot_precision@10    | 0.0509    |
| dot_recall@1        | 0.0037    |
| dot_recall@3        | 0.2625    |
| dot_recall@5        | 0.4018    |
| dot_recall@10       | 0.509     |
| dot_ndcg@10         | 0.2476    |
| dot_mrr@10          | 0.1645    |
| dot_map@100         | 0.1768    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 40,338 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                        |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 19.64 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.27 tokens</li><li>max: 36 tokens</li></ul> |
* Samples:
  | sentence_0                                                                             | sentence_1                                                  |
  |:---------------------------------------------------------------------------------------|:------------------------------------------------------------|
  | <code>A group of ladies trying to learn how to belly dance.</code>                     | <code>Several women learn the art of exotic dancing.</code> |
  | <code>A man and a woman are having a conversation, while the man drinks a beer.</code> | <code>The man is drinking.</code>                           |
  | <code>A brown dog drinks from a water bottle.</code>                                   | <code>A brown cat drinks from a bowl.</code>                |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step  | Training Loss | eval_cosine_map@100 |
|:------:|:-----:|:-------------:|:-------------------:|
| 0.1983 | 500   | 1.2356        | 0.0873              |
| 0.3965 | 1000  | 0.4077        | 0.1200              |
| 0.5948 | 1500  | 0.3205        | 0.1280              |
| 0.7930 | 2000  | 0.2576        | 0.1416              |
| 0.9913 | 2500  | 0.2435        | 0.1476              |
| 1.0    | 2522  | -             | 0.1492              |
| 1.1895 | 3000  | 0.1821        | 0.1553              |
| 1.3878 | 3500  | 0.1237        | 0.1589              |
| 1.5860 | 4000  | 0.1074        | 0.1603              |
| 1.7843 | 4500  | 0.0905        | 0.1654              |
| 1.9826 | 5000  | 0.0783        | 0.1685              |
| 2.0    | 5044  | -             | 0.1683              |
| 2.1808 | 5500  | 0.0583        | 0.1698              |
| 2.3791 | 6000  | 0.0432        | 0.1746              |
| 2.5773 | 6500  | 0.0365        | 0.1749              |
| 2.7756 | 7000  | 0.0303        | 0.1791              |
| 2.9738 | 7500  | 0.0276        | 0.1788              |
| 3.0    | 7566  | -             | 0.1805              |
| 3.1721 | 8000  | 0.02          | 0.1807              |
| 3.3703 | 8500  | 0.013         | 0.1823              |
| 3.5686 | 9000  | 0.0123        | 0.1839              |
| 3.7669 | 9500  | 0.0099        | 0.1852              |
| 3.9651 | 10000 | 0.01          | 0.1850              |
| 4.0    | 10088 | -             | 0.1850              |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->