File size: 18,510 Bytes
c59b096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
---
base_model: cross-encoder/nli-deberta-v3-large
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:40338
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '"Rumpelstilsken, I command the sun to set!" He seemed to sense
a hesitation in his mind, and then the impression of jeweled gears turning.'
sentences:
- A football game is playing.
- He sensed hesitation when commanding Rumpelstiltskin.
- I ran and he saw me immediately.
- source_sentence: A woman wears sunglasses and a black coat as she walks.
sentences:
- The lady in black walks while wearing her shades.
- Two women were walking
- The people are running towards the mountains.
- source_sentence: The Congress relies on GAO to examine virtually every federal program,
activity, and policy, as well as institutions that rely on federal funds.
sentences:
- The men are standing in line at the restaurant.
- GAO helps Congress.
- Tide permitting, view the shrine from its base to appreciate its full size.
- source_sentence: The resort was named after Louis James Fraser, an English adventurer
and scoundrel, who dealt in mule hides, tin, opium, and gambling.
sentences:
- A man in front of people.
- The resort was named after an English adventurer and scoundrel.
- A woman is holding flowers by two men on a bench.
- source_sentence: Three men riding a bicycle, tow of them are wearing a helmet.
sentences:
- Accountability measures help establish the financial condition of the government.
- A man is pushing a truck.
- There are at least two helmets.
model-index:
- name: SentenceTransformer based on cross-encoder/nli-deberta-v3-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy@1
value: 0.0003470672814715653
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2842728940453171
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.42875204521790866
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5317318657345431
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0003470672814715653
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09475763134843902
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08575040904358174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.053173186573454316
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0003470672814715653
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2842728940453171
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.42875204521790866
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5317318657345431
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2599623819220365
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.17320152646642903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1849889511878054
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.003718578015766771
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.262531607913134
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.40182954038375723
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.5089741682780504
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.003718578015766771
name: Dot Precision@1
- type: dot_precision@3
value: 0.08751053597104465
name: Dot Precision@3
- type: dot_precision@5
value: 0.08036590807675144
name: Dot Precision@5
- type: dot_precision@10
value: 0.050897416827805034
name: Dot Precision@10
- type: dot_recall@1
value: 0.003718578015766771
name: Dot Recall@1
- type: dot_recall@3
value: 0.262531607913134
name: Dot Recall@3
- type: dot_recall@5
value: 0.40182954038375723
name: Dot Recall@5
- type: dot_recall@10
value: 0.5089741682780504
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.24760156704826422
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.16454750021051548
name: Dot Mrr@10
- type: dot_map@100
value: 0.17684391661589097
name: Dot Map@100
---
# SentenceTransformer based on cross-encoder/nli-deberta-v3-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cross-encoder/nli-deberta-v3-large](https://huggingface.co/cross-encoder/nli-deberta-v3-large) <!-- at revision 52fab31a566138fbd1f6833a4efc1199f875f05e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large")
# Run inference
sentences = [
'Three men riding a bicycle, tow of them are wearing a helmet.',
'There are at least two helmets.',
'Accountability measures help establish the financial condition of the government.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.0003 |
| cosine_accuracy@3 | 0.2843 |
| cosine_accuracy@5 | 0.4288 |
| cosine_accuracy@10 | 0.5317 |
| cosine_precision@1 | 0.0003 |
| cosine_precision@3 | 0.0948 |
| cosine_precision@5 | 0.0858 |
| cosine_precision@10 | 0.0532 |
| cosine_recall@1 | 0.0003 |
| cosine_recall@3 | 0.2843 |
| cosine_recall@5 | 0.4288 |
| cosine_recall@10 | 0.5317 |
| cosine_ndcg@10 | 0.26 |
| cosine_mrr@10 | 0.1732 |
| **cosine_map@100** | **0.185** |
| dot_accuracy@1 | 0.0037 |
| dot_accuracy@3 | 0.2625 |
| dot_accuracy@5 | 0.4018 |
| dot_accuracy@10 | 0.509 |
| dot_precision@1 | 0.0037 |
| dot_precision@3 | 0.0875 |
| dot_precision@5 | 0.0804 |
| dot_precision@10 | 0.0509 |
| dot_recall@1 | 0.0037 |
| dot_recall@3 | 0.2625 |
| dot_recall@5 | 0.4018 |
| dot_recall@10 | 0.509 |
| dot_ndcg@10 | 0.2476 |
| dot_mrr@10 | 0.1645 |
| dot_map@100 | 0.1768 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 40,338 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 19.64 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.27 tokens</li><li>max: 36 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:---------------------------------------------------------------------------------------|:------------------------------------------------------------|
| <code>A group of ladies trying to learn how to belly dance.</code> | <code>Several women learn the art of exotic dancing.</code> |
| <code>A man and a woman are having a conversation, while the man drinks a beer.</code> | <code>The man is drinking.</code> |
| <code>A brown dog drinks from a water bottle.</code> | <code>A brown cat drinks from a bowl.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | eval_cosine_map@100 |
|:------:|:-----:|:-------------:|:-------------------:|
| 0.1983 | 500 | 1.2356 | 0.0873 |
| 0.3965 | 1000 | 0.4077 | 0.1200 |
| 0.5948 | 1500 | 0.3205 | 0.1280 |
| 0.7930 | 2000 | 0.2576 | 0.1416 |
| 0.9913 | 2500 | 0.2435 | 0.1476 |
| 1.0 | 2522 | - | 0.1492 |
| 1.1895 | 3000 | 0.1821 | 0.1553 |
| 1.3878 | 3500 | 0.1237 | 0.1589 |
| 1.5860 | 4000 | 0.1074 | 0.1603 |
| 1.7843 | 4500 | 0.0905 | 0.1654 |
| 1.9826 | 5000 | 0.0783 | 0.1685 |
| 2.0 | 5044 | - | 0.1683 |
| 2.1808 | 5500 | 0.0583 | 0.1698 |
| 2.3791 | 6000 | 0.0432 | 0.1746 |
| 2.5773 | 6500 | 0.0365 | 0.1749 |
| 2.7756 | 7000 | 0.0303 | 0.1791 |
| 2.9738 | 7500 | 0.0276 | 0.1788 |
| 3.0 | 7566 | - | 0.1805 |
| 3.1721 | 8000 | 0.02 | 0.1807 |
| 3.3703 | 8500 | 0.013 | 0.1823 |
| 3.5686 | 9000 | 0.0123 | 0.1839 |
| 3.7669 | 9500 | 0.0099 | 0.1852 |
| 3.9651 | 10000 | 0.01 | 0.1850 |
| 4.0 | 10088 | - | 0.1850 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |