metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: mental/mental-bert-base-uncased
metrics:
- accuracy
widget:
- text: I let myself go, I make no effort to eat, sleep or take care of myself.
- text: There's no structure in my life, and that makes me even sicker.
- text: >-
I'm drifting away from my friends, my family, games that I couldn't
possibly know anything about.
- text: >-
My grandmother's homemade pasta recipe is the best, nothing else compares
to it.
- text: >-
It's frustrating to realize I've made yet another impulsive choice that
sets me back instead of moving forward.
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with mental/mental-bert-base-uncased
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8275862068965517
name: Accuracy
SetFit with mental/mental-bert-base-uncased
This is a SetFit model that can be used for Text Classification. This SetFit model uses mental/mental-bert-base-uncased as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mental/mental-bert-base-uncased
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 8 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Presence of a loved one |
|
Previous attempt |
|
Ability to take care of oneself |
|
Ability to hope for change |
|
Other |
|
Suicidal planning |
|
Ability to control oneself |
|
Consumption |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8276 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("richie-ghost/setfit-mental-bert-base-uncased-Suicidal-Topic-Check")
# Run inference
preds = model("There's no structure in my life, and that makes me even sicker.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 7 | 18.3582 | 40 |
Label | Training Sample Count |
---|---|
Suicidal planning | 9 |
Previous attempt | 11 |
Presence of a loved one | 8 |
Other | 9 |
Consumption | 6 |
Ability to take care of oneself | 8 |
Ability to hope for change | 7 |
Ability to control oneself | 9 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0041 | 1 | 0.3127 | - |
0.2041 | 50 | 0.1378 | - |
0.4082 | 100 | 0.0519 | - |
0.6122 | 150 | 0.0043 | - |
0.8163 | 200 | 0.0014 | - |
1.0 | 245 | - | 0.0717 |
1.0204 | 250 | 0.0008 | - |
1.2245 | 300 | 0.0006 | - |
1.4286 | 350 | 0.0006 | - |
1.6327 | 400 | 0.0003 | - |
1.8367 | 450 | 0.0005 | - |
2.0 | 490 | - | 0.0693 |
2.0408 | 500 | 0.0005 | - |
2.2449 | 550 | 0.0006 | - |
2.4490 | 600 | 0.0005 | - |
2.6531 | 650 | 0.0003 | - |
2.8571 | 700 | 0.0003 | - |
3.0 | 735 | - | 0.0698 |
0.0041 | 1 | 0.0003 | - |
0.2041 | 50 | 0.0006 | - |
0.4082 | 100 | 0.0004 | - |
0.6122 | 150 | 0.001 | - |
0.8163 | 200 | 0.0002 | - |
1.0 | 245 | - | 0.0633 |
1.0204 | 250 | 0.0002 | - |
1.2245 | 300 | 0.0 | - |
1.4286 | 350 | 0.0001 | - |
1.6327 | 400 | 0.0001 | - |
1.8367 | 450 | 0.0001 | - |
2.0 | 490 | - | 0.0598 |
2.0408 | 500 | 0.0001 | - |
2.2449 | 550 | 0.0001 | - |
2.4490 | 600 | 0.0001 | - |
2.6531 | 650 | 0.0001 | - |
2.8571 | 700 | 0.0001 | - |
3.0 | 735 | - | 0.0585 |
3.0612 | 750 | 0.0001 | - |
3.2653 | 800 | 0.0001 | - |
3.4694 | 850 | 0.0001 | - |
3.6735 | 900 | 0.0001 | - |
3.8776 | 950 | 0.0 | - |
4.0 | 980 | - | 0.0582 |
4.0816 | 1000 | 0.0001 | - |
4.2857 | 1050 | 0.0 | - |
4.4898 | 1100 | 0.0 | - |
4.6939 | 1150 | 0.0 | - |
4.8980 | 1200 | 0.0 | - |
5.0 | 1225 | - | 0.0583 |
5.1020 | 1250 | 0.0 | - |
5.3061 | 1300 | 0.0 | - |
5.5102 | 1350 | 0.0 | - |
5.7143 | 1400 | 0.0 | - |
5.9184 | 1450 | 0.0 | - |
6.0 | 1470 | - | 0.0561 |
0.0041 | 1 | 0.0 | - |
0.2041 | 50 | 0.0 | - |
0.4082 | 100 | 0.0001 | - |
0.6122 | 150 | 0.0002 | - |
0.8163 | 200 | 0.0002 | - |
1.0 | 245 | - | 0.0699 |
1.0204 | 250 | 0.0001 | - |
1.2245 | 300 | 0.0001 | - |
1.4286 | 350 | 0.0 | - |
1.6327 | 400 | 0.0 | - |
1.8367 | 450 | 0.0 | - |
2.0 | 490 | - | 0.0653 |
2.0408 | 500 | 0.0001 | - |
2.2449 | 550 | 0.0 | - |
2.4490 | 600 | 0.0 | - |
2.6531 | 650 | 0.0001 | - |
2.8571 | 700 | 0.0001 | - |
3.0 | 735 | - | 0.0651 |
3.0612 | 750 | 0.0 | - |
3.2653 | 800 | 0.0 | - |
3.4694 | 850 | 0.0 | - |
3.6735 | 900 | 0.0 | - |
3.8776 | 950 | 0.0001 | - |
4.0 | 980 | - | 0.0634 |
4.0816 | 1000 | 0.0 | - |
4.2857 | 1050 | 0.0 | - |
4.4898 | 1100 | 0.0 | - |
4.6939 | 1150 | 0.0 | - |
4.8980 | 1200 | 0.0 | - |
5.0 | 1225 | - | 0.0654 |
5.1020 | 1250 | 0.0 | - |
5.3061 | 1300 | 0.0 | - |
5.5102 | 1350 | 0.0 | - |
5.7143 | 1400 | 0.0 | - |
5.9184 | 1450 | 0.0 | - |
6.0 | 1470 | - | 0.0627 |
6.1224 | 1500 | 0.0 | - |
6.3265 | 1550 | 0.0 | - |
6.5306 | 1600 | 0.0 | - |
6.7347 | 1650 | 0.0 | - |
6.9388 | 1700 | 0.0 | - |
7.0 | 1715 | - | 0.0648 |
7.1429 | 1750 | 0.0 | - |
7.3469 | 1800 | 0.0 | - |
7.5510 | 1850 | 0.0 | - |
7.7551 | 1900 | 0.0 | - |
7.9592 | 1950 | 0.0 | - |
8.0 | 1960 | - | 0.0636 |
8.1633 | 2000 | 0.0 | - |
8.3673 | 2050 | 0.0 | - |
8.5714 | 2100 | 0.0 | - |
8.7755 | 2150 | 0.0 | - |
8.9796 | 2200 | 0.0 | - |
9.0 | 2205 | - | 0.0648 |
9.1837 | 2250 | 0.0 | - |
9.3878 | 2300 | 0.0 | - |
9.5918 | 2350 | 0.0 | - |
9.7959 | 2400 | 0.0 | - |
10.0 | 2450 | 0.0 | 0.0643 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}