SetFit with csarron/mobilebert-uncased-squad-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses csarron/mobilebert-uncased-squad-v2 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • "How's the family?"
  • 'Thanks a million.'
  • 'I appreciate your kindness.'
0
  • 'What is the next step in the process?'
  • 'Please complete the review by the end of the week.'
  • 'I feel disconnected from reality.'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("richie-ghost/setfit-mobile-bert-phatic")
# Run inference
preds = model("Have a good day!")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 8.2394 184
Label Training Sample Count
0 143
1 116

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0009 1 0.3528 -
1.0 1068 0.0252 0.0729
2.0 2136 0.0001 0.0544
0.0015 1 0.0 -
0.0772 50 0.001 -
0.1543 100 0.0 -
0.2315 150 0.0 -
0.3086 200 0.0 -
0.3858 250 0.0015 -
0.4630 300 0.001 -
0.5401 350 0.0 -
0.6173 400 0.0 -
0.6944 450 0.0 -
0.7716 500 0.0 -
0.8488 550 0.0 -
0.9259 600 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.39.0
  • PyTorch: 2.0.1+cu117
  • Datasets: 3.1.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
24
Safetensors
Model size
24.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for richie-ghost/setfit-mobile-bert-phatic

Finetuned
(12)
this model