mkshing's picture
update README.md
605b122
|
raw
history blame
1.55 kB
---
language: ja
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: apache-2.0
tasks: Feature Extraction
tags:
- ja
- japanese
- clip
- cloob
- vision
---
# rinna/japanese-cloob-vit-b-16
![rinna-icon](./rinna.png)
This repository provides a Japanese [CLOOB (Contrastive Leave One Out Boost)](https://arxiv.org/abs/2110.11316) model. The model was trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/)
# How to use the model
1. Install package
```shell
$ pip install git+https://github.com/rinnakk/japanese-clip.git
```
2. Run
```python
import io
import requests
from PIL import Image
import torch
import japanese_clip as ja_clip
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = ja_clip.load("rinna/japanese-cloob-vit-b-16", device=device)
tokenizer = ja_clip.load_tokenizer()
img = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content))
image = preprocess(img).unsqueeze(0).to(device)
encodings = ja_clip.tokenize(
texts=["犬", "猫", "象"],
max_seq_len=77,
device=device,
tokenizer=tokenizer, # this is optional. if you don't pass, load tokenizer each time
)
with torch.no_grad():
image_features = model.get_image_features(image)
text_features = model.get_text_features(**encodings)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs) # prints: [[1.0, 0.0, 0.0]]
```