youri-7b / README.md
tianyuz's picture
update
2be40b8
|
raw
history blame
5.26 kB
metadata
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama2
datasets:
  - mc4
  - wikipedia
  - EleutherAI/pile
  - oscar-corpus/colossal-oscar-1.0
  - cc100
language:
  - ja
  - en
inference: false

rinna/youri-7b

rinna-icon

Overview

We conduct continual pre-training of llama2-7b on 40B tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks.

The name youri comes from the Japanese word 妖狸/ようり/Youri, which is a kind of Japanese mythical creature (妖怪/ようかい/Youkai).


Benchmarking

Evaluation experiments suggest that rinna's youri-7b series outperforms other open-source Japanese LLMs on Japanese tasks according to our runs.

Model Model type 4-task score 6-task score 8-task score
rinna/youri-7b-instruction SFT 83.88 80.93 63.63
rinna/youri-7b-chat SFT 78.29 78.47 62.18
matsuo-lab/weblab-10b-instruction-sft SFT 78.75 75.05 59.11
rinna/youri-7b pre-trained 73.32 74.58 58.87
stabilityai/japanese-stablelm-instruct-alpha-7b SFT 70.10 71.32 54.71
elyza/ELYZA-japanese-Llama-2-7b pre-trained 71.72 69.28 53.17
elyza/ELYZA-japanese-Llama-2-7b-instruct SFT 70.57 68.12 53.14
stabilityai/japanese-stablelm-base-alpha-7b pre-trained 61.03 65.83 51.05
matsuo-lab/weblab-10b pre-trained 66.33 65.58 50.74
meta/llama2-7b pre-trained 56.33 54.80 42.97
rinna/japanese-gpt-neox-3.6b pre-trained 47.20 54.68 41.80
rinna/bilingual-gpt-neox-4b pre-trained 46.60 52.04 40.03

How to use the model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b")
model = AutoModelForCausalLM.from_pretrained("rinna/youri-7b")

if torch.cuda.is_available():
    model = model.to("cuda")

text = "西田幾多郎は、"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=200,
        min_new_tokens=200,
        do_sample=True,
        temperature=1.0,
        top_p=0.95,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0])
print(output)
"""
西田幾多郎は、プラトンの復権を主張し、対する従来の西洋哲学は、近代の合理主義哲学に委ね、「従来の哲学は破 壊されてしまった」と述べている。 西田幾多郎は、西洋近代哲学の「徹底的な検討」を拒んだ。それは、「現代的理解の脆弱性を補う筈の、従来のヨーロッパに伝わる哲学的な方法では到底それができなかったからである」とい
"""

Tokenization

The model uses the original llama-2 tokenizer.


How to cite

@misc{RinnaYouri7b, 
    url={https://huggingface.co/rinna/youri-7b}, 
    title={rinna/youri-7b}, 
    author={Zhao, Tianyu and Kaga, Akio and Sawada, Kei}
}

Citations

@software{gpt-neox-library,
    title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}},
    author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
    url = {https://www.github.com/eleutherai/gpt-neox},
    doi = {10.5281/zenodo.5879544},
    month = {8},
    year = {2021},
    version = {0.0.1},
}

License

The llama2 license