SentenceTransformer based on BAAI/bge-large-en
This is a sentence-transformers model finetuned from BAAI/bge-large-en. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rnbokade/custom-bge")
# Run inference
sentences = [
'3783 UC Davis (Northern Cal - Jon Sanguinetti)->Seq 18-P-3783',
'dwg-3783s18 : 3783 Seq 18 - Drawings',
'mat-3783s5 : 3783 Seq 5 - Material Order',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
custom-bge-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9838 |
dot_accuracy | 0.0162 |
manhattan_accuracy | 0.9838 |
euclidean_accuracy | 0.9838 |
max_accuracy | 0.9838 |
Triplet
- Dataset:
custom-bge-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9838 |
dot_accuracy | 0.0162 |
manhattan_accuracy | 0.9838 |
euclidean_accuracy | 0.9838 |
max_accuracy | 0.9838 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 22,604 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 22 tokens
- mean: 25.35 tokens
- max: 27 tokens
- min: 15 tokens
- mean: 18.84 tokens
- max: 24 tokens
- min: 6 tokens
- mean: 16.74 tokens
- max: 38 tokens
- Samples:
anchor positive negative MOD 1- Metal Decking - Floor
Stud Wall Panels
Floor Sheathing (Megaboard) Layout of Dirtt Frame CenterlinesEW1001-125 : Door Slabs / Frames / Hardware
dwg-3783s16 : 3783 Seq 16 - Drawings
MOD 1- Metal Decking - Floor
Stud Wall Panels
Floor Sheathing (Megaboard) Layout of Dirtt Frame CenterlinesEW1001-125 : Door Slabs / Frames / Hardware
mat-3783s16 : 3783 Seq 16 - Material Order
MOD 1- Metal Decking - Floor
Stud Wall Panels
Floor Sheathing (Megaboard) Layout of Dirtt Frame CenterlinesEW1001-125 : Door Slabs / Frames / Hardware
dwg-3786s292 : 3786 Seq 292 - Drawings
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 618 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 22 tokens
- mean: 33.18 tokens
- max: 45 tokens
- min: 13 tokens
- mean: 17.48 tokens
- max: 22 tokens
- min: 13 tokens
- mean: 17.48 tokens
- max: 22 tokens
- Samples:
anchor positive negative 23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab
26-0500-1.0 : Breakers (3P 20A)
dwg-3786s17 : 3786 Seq 17 - Drawings
23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab
26-0500-1.0 : Breakers (3P 20A)
mat-3786s17 : 3786 Seq 17 - Material Order
23-0125 - Crispr mRNA Fume Hood Installations->Construction->QC Lab 1218 Fume Hood Install->Electrical - Fume Hood Power/Grounding Terminations - QC Lab
26-0500-1.0 : Breakers (3P 20A)
09-9000-2.0 : Paint and Coatings
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | custom-bge-dev_max_accuracy | custom-bge-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.8463 | - |
0.0708 | 100 | 0.5651 | 0.6065 | 0.9919 | - |
0.1415 | 200 | 0.168 | 0.4217 | 0.9935 | - |
0.2123 | 300 | 0.0499 | 0.6747 | 0.9951 | - |
0.2831 | 400 | 0.2205 | 0.8112 | 0.9951 | - |
0.3539 | 500 | 0.1167 | 0.7040 | 0.9903 | - |
0.4246 | 600 | 0.0968 | 0.7364 | 0.9822 | - |
0.4954 | 700 | 0.1704 | 0.5540 | 0.9968 | - |
0.5662 | 800 | 0.1104 | 0.7266 | 0.9951 | - |
0.6369 | 900 | 0.1698 | 1.1020 | 0.9725 | - |
0.7077 | 1000 | 0.1077 | 0.9028 | 0.9790 | - |
0.7785 | 1100 | 0.1667 | 0.8478 | 0.9757 | - |
0.8493 | 1200 | 0.0707 | 0.7629 | 0.9887 | - |
0.9200 | 1300 | 0.0299 | 0.8024 | 0.9871 | - |
0.9908 | 1400 | 0.0005 | 0.8161 | 0.9838 | - |
1.0 | 1413 | - | - | - | 0.9838 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rnbokade/custom-bge
Base model
BAAI/bge-large-enEvaluation results
- Cosine Accuracy on custom bge devself-reported0.984
- Dot Accuracy on custom bge devself-reported0.016
- Manhattan Accuracy on custom bge devself-reported0.984
- Euclidean Accuracy on custom bge devself-reported0.984
- Max Accuracy on custom bge devself-reported0.984
- Cosine Accuracy on custom bge testself-reported0.984
- Dot Accuracy on custom bge testself-reported0.016
- Manhattan Accuracy on custom bge testself-reported0.984
- Euclidean Accuracy on custom bge testself-reported0.984
- Max Accuracy on custom bge testself-reported0.984