|
--- |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
tags: |
|
- trl |
|
- dpo |
|
- conversational |
|
language: |
|
- nl |
|
datasets: |
|
- BramVanroy/ultra_feedback_dutch_cleaned |
|
pipeline_tag: text-generation |
|
inference: false |
|
--- |
|
|
|
# Qwen1.5-7B-Dutch-Chat |
|
|
|
## Model description |
|
|
|
This DPO aligned model is the merged version of the adapter model [robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo](robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo). |
|
|
|
DPO Finetuning was performed on the Dutch [BramVanroy/ultra_feedback_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) dataset. |
|
|
|
See [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) for all information about the base model. |
|
|
|
|
|
## Model usage |
|
|
|
A basic example of how to use the finetuned model. |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
device = 'cuda' |
|
model_name = 'robinsmits/Qwen1.5-7B-Dutch-Chat' |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, |
|
device_map = "auto", |
|
torch_dtype = torch.bfloat16) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
messages = [{"role": "user", "content": "Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?"}] |
|
|
|
encoded_ids = tokenizer.apply_chat_template(messages, |
|
add_generation_prompt = True, |
|
return_tensors = "pt") |
|
|
|
generated_ids = model.generate(input_ids = encoded_ids.to(device), |
|
max_new_tokens = 256, |
|
do_sample = True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |
|
|
|
Below the chat template with the generated output. |
|
|
|
``` |
|
<|im_start|>system |
|
Je bent een behulpzame AI assistent<|im_end|> |
|
<|im_start|>user |
|
Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?<|im_end|> |
|
<|im_start|>assistant |
|
Hallo! Appels zijn zo'n lekkere fruitsoort. Ze zijn zoet en knapperig, en je kunt ze koken, roosteren of zelfs in smoothies doen. Er zijn heel veel verschillende soorten appels, zoals de Fuji, Granny Smith en Gala. De appels die je meestal in de winkel koopt, komen van bomen die in het oosten van Noord-Amerika groeien.<|im_end|> |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
As with all LLM's this model can also experience bias and hallucinations. Regardless of how you use this model always perform the necessary testing and validation. |
|
|
|
The used dataset does not allow commercial usage. |
|
|
|
## Training and evaluation data |
|
|
|
The training notebook is available at the following link: [Qwen1_5_7B_Dutch_Chat_DPO](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Qwen1_5_7B_Dutch_Chat_DPO.ipynb) |
|
|
|
Training was performed with Google Colab PRO on a A100 - 40GB and lasted around 4 hours. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2610 |
|
- Rewards/chosen: -0.7248 |
|
- Rewards/rejected: -2.6224 |
|
- Rewards/accuracies: 0.9170 |
|
- Rewards/margins: 1.8976 |
|
- Logps/rejected: -877.8102 |
|
- Logps/chosen: -783.4282 |
|
- Logits/rejected: -0.8110 |
|
- Logits/chosen: -0.7528 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.5503 | 0.1 | 30 | 0.4684 | -0.0439 | -0.6295 | 0.8919 | 0.5856 | -837.9513 | -769.8103 | -0.9335 | -0.8894 | |
|
| 0.4178 | 0.2 | 60 | 0.3568 | -0.3713 | -1.4769 | 0.9015 | 1.1056 | -854.9000 | -776.3594 | -0.8768 | -0.8276 | |
|
| 0.3264 | 0.29 | 90 | 0.3143 | -0.4893 | -1.8730 | 0.9151 | 1.3837 | -862.8228 | -778.7191 | -0.8428 | -0.7929 | |
|
| 0.2999 | 0.39 | 120 | 0.2885 | -0.6832 | -2.3118 | 0.9151 | 1.6286 | -871.5981 | -782.5971 | -0.8260 | -0.7730 | |
|
| 0.3454 | 0.49 | 150 | 0.2749 | -0.7239 | -2.4904 | 0.9189 | 1.7664 | -875.1693 | -783.4113 | -0.8235 | -0.7678 | |
|
| 0.3354 | 0.59 | 180 | 0.2685 | -0.6775 | -2.4859 | 0.9170 | 1.8084 | -875.0795 | -782.4824 | -0.8130 | -0.7574 | |
|
| 0.2848 | 0.68 | 210 | 0.2652 | -0.7157 | -2.5692 | 0.9131 | 1.8535 | -876.7465 | -783.2466 | -0.8157 | -0.7586 | |
|
| 0.3437 | 0.78 | 240 | 0.2621 | -0.7233 | -2.6091 | 0.9151 | 1.8857 | -877.5430 | -783.3994 | -0.8138 | -0.7561 | |
|
| 0.2655 | 0.88 | 270 | 0.2611 | -0.7183 | -2.6154 | 0.9151 | 1.8971 | -877.6708 | -783.2995 | -0.8106 | -0.7524 | |
|
| 0.3442 | 0.98 | 300 | 0.2610 | -0.7248 | -2.6224 | 0.9170 | 1.8976 | -877.8102 | -783.4282 | -0.8110 | -0.7528 | |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|
|
## Citation |
|
Thanks to the creators of Qwen1.5 for there great work! |
|
``` |
|
@article{qwen, |
|
title={Qwen Technical Report}, |
|
author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, |
|
journal={arXiv preprint arXiv:2309.16609}, |
|
year={2023} |
|
} |
|
``` |