Edit model card

t5-abs-2309-1054-lr-0.0001-bs-5-maxep-20

This model is a fine-tuned version of google-t5/t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0305
  • Rouge/rouge1: 0.4716
  • Rouge/rouge2: 0.2252
  • Rouge/rougel: 0.4006
  • Rouge/rougelsum: 0.402
  • Bertscore/bertscore-precision: 0.8972
  • Bertscore/bertscore-recall: 0.8983
  • Bertscore/bertscore-f1: 0.8976
  • Meteor: 0.4354
  • Gen Len: 41.2455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.0239 1.0 87 3.5307 0.4777 0.229 0.409 0.4106 0.8977 0.8993 0.8984 0.4382 41.0545
0.0141 2.0 174 3.6667 0.4765 0.2246 0.4059 0.4075 0.9001 0.8985 0.8991 0.429 39.2364
0.027 3.0 261 3.7158 0.4704 0.219 0.3992 0.3991 0.8956 0.8967 0.896 0.4319 40.8455
0.0247 4.0 348 3.7320 0.4663 0.2173 0.3945 0.3947 0.8959 0.8973 0.8965 0.4271 41.6
0.0225 5.0 435 3.8031 0.4767 0.2219 0.4017 0.4025 0.8975 0.8977 0.8975 0.4341 40.1
0.0196 6.0 522 3.8516 0.4703 0.2223 0.3989 0.3996 0.8958 0.8977 0.8967 0.4337 41.4
0.0168 7.0 609 3.9028 0.4747 0.227 0.4023 0.4029 0.8968 0.8987 0.8976 0.4378 41.3
0.0165 8.0 696 3.9116 0.4676 0.2224 0.3955 0.397 0.8965 0.8974 0.8968 0.4305 41.4727
0.0153 9.0 783 3.9268 0.4737 0.2288 0.4016 0.4025 0.8965 0.8984 0.8973 0.4411 41.4545
0.0149 10.0 870 3.9513 0.48 0.2329 0.4095 0.4101 0.8989 0.8997 0.8992 0.4438 41.0273
0.0142 11.0 957 3.9677 0.475 0.226 0.4037 0.4043 0.8949 0.8987 0.8967 0.4474 42.6182
0.0132 12.0 1044 3.9769 0.4703 0.2243 0.3977 0.3986 0.8967 0.8977 0.8971 0.4359 41.0182
0.0128 13.0 1131 3.9994 0.4695 0.2232 0.3987 0.3996 0.8958 0.8983 0.8969 0.4401 42.0545
0.012 14.0 1218 4.0018 0.471 0.2252 0.3992 0.3991 0.8963 0.8989 0.8975 0.4397 41.8909
0.0104 15.0 1305 4.0231 0.4799 0.2297 0.4066 0.4076 0.8975 0.8995 0.8984 0.446 41.6091
0.0104 16.0 1392 4.0239 0.4758 0.2309 0.4057 0.4059 0.8982 0.8994 0.8987 0.4439 41.3636
0.0094 17.0 1479 4.0272 0.4752 0.2275 0.4035 0.4045 0.8977 0.8991 0.8983 0.4404 41.6455
0.0093 18.0 1566 4.0272 0.4736 0.2264 0.4026 0.4036 0.8973 0.8988 0.8979 0.4394 41.7545
0.0098 19.0 1653 4.0307 0.4736 0.2258 0.4018 0.403 0.8971 0.8984 0.8976 0.4362 41.1455
0.0084 20.0 1740 4.0305 0.4716 0.2252 0.4006 0.402 0.8972 0.8983 0.8976 0.4354 41.2455

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
223M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for roequitz/t5-abs-2309-1054-lr-0.0001-bs-5-maxep-20

Base model

google-t5/t5-base
Finetuned
(408)
this model