rohith2812's picture
End of training
8106bfa verified
|
raw
history blame
1.68 kB
metadata
base_model: rohith2812/atoi-finetuned-model-v2
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - diffusers-training

Text-to-image finetuning - rohith2812/atoi-finetuned-model-v3

This pipeline was finetuned from rohith2812/atoi-finetuned-model-v2 on the rohith2812/atoi-finetuning dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A picture explaining the convolutional neural network']:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("rohith2812/atoi-finetuned-model-v3", torch_dtype=torch.float16)
prompt = "A picture explaining the convolutional neural network"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 18
  • Learning rate: 1e-05
  • Batch size: 1
  • Gradient accumulation steps: 4
  • Image resolution: 512
  • Mixed-precision: fp16

Intended uses & limitations

How to use

# TODO: add an example code snippet for running this diffusion pipeline

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]