llava_test / README.md
rohitsaxena's picture
End of training
9d38f1a verified
metadata
base_model: llava-hf/llava-1.5-7b-hf
library_name: peft
license: llama2
metrics:
  - bleu
  - rouge
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: llava_test
    results: []

llava_test

This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0446
  • Bleu: 0.6353
  • Rouge1: 0.7885
  • Rouge2: 0.7889
  • Rougel: 0.7893
  • Bertscore Precision: 0.6807
  • Bertscore Recall: 0.7674
  • Bertscore F1: 0.7213

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge1 Rouge2 Rougel Bertscore Precision Bertscore Recall Bertscore F1
0.3168 10.0 10 2.2001 0.0724 0.3123 0.1239 0.2433 0.7068 0.7777 0.7405
0.2454 20.0 20 1.6882 0.1061 0.4044 0.1840 0.3274 0.7241 0.7794 0.7507
0.1821 30.0 30 1.1567 0.1925 0.5281 0.2989 0.4593 0.7054 0.7756 0.7387
0.109 40.0 40 0.5242 0.3915 0.6689 0.5316 0.6370 0.6878 0.7709 0.7268
0.0378 50.0 50 0.1193 0.5971 0.7701 0.7585 0.7700 0.6839 0.7688 0.7237
0.0098 60.0 60 0.0554 0.6254 0.7862 0.7867 0.7875 0.6799 0.7694 0.7217
0.0064 70.0 70 0.0482 0.6329 0.7889 0.7890 0.7899 0.6798 0.7690 0.7215
0.0059 80.0 80 0.0459 0.6331 0.7877 0.7877 0.7888 0.6777 0.7670 0.7194
0.0057 90.0 90 0.0451 0.6347 0.7897 0.7895 0.7907 0.6807 0.7675 0.7213
0.0056 100.0 100 0.0446 0.6353 0.7885 0.7889 0.7893 0.6807 0.7674 0.7213

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1