metadata
library_name: transformers
license: llama2
base_model: llava-hf/llava-1.5-7b-hf
tags:
- trl
- sft
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: sft-llava-1.5-7b-hf3
results: []
sft-llava-1.5-7b-hf3
This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 13.1181
- Bleu: 0.0
- Rouge1: 0.0651
- Rouge2: 0.0043
- Rougel: 0.0508
- Bertscore Precision: 0.6243
- Bertscore Recall: 0.7482
- Bertscore F1: 0.6806
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 |
---|---|---|---|---|---|---|---|---|---|---|
6.903 | 0.3101 | 200 | 22.1793 | 0.0 | 0.0440 | 0.0 | 0.0441 | 0.6243 | 0.7482 | 0.6806 |
6.585 | 0.6202 | 400 | 27.3559 | 0.0 | 0.0546 | 0.0043 | 0.0425 | 0.6243 | 0.7482 | 0.6806 |
6.5197 | 0.9302 | 600 | 26.1987 | 0.0 | 0.0546 | 0.0043 | 0.0425 | 0.6243 | 0.7482 | 0.6806 |
6.2662 | 1.2403 | 800 | 21.1666 | 0.0 | 0.0633 | 0.0043 | 0.0520 | 0.6243 | 0.7482 | 0.6806 |
6.0303 | 1.5504 | 1000 | 21.0359 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.7602 | 1.8605 | 1200 | 19.0201 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.6359 | 2.1705 | 1400 | 18.6311 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.5176 | 2.4806 | 1600 | 17.9442 | 0.0 | 0.0649 | 0.0043 | 0.0496 | 0.6243 | 0.7482 | 0.6806 |
5.4608 | 2.7907 | 1800 | 16.6921 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.2881 | 3.1008 | 2000 | 15.3415 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.2429 | 3.4109 | 2200 | 14.8475 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.1929 | 3.7209 | 2400 | 14.2828 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.1259 | 4.0310 | 2600 | 13.8075 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.0379 | 4.3411 | 2800 | 13.4751 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.1071 | 4.6512 | 3000 | 13.2275 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
5.1082 | 4.9612 | 3200 | 13.1181 | 0.0 | 0.0651 | 0.0043 | 0.0508 | 0.6243 | 0.7482 | 0.6806 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.2.0a0+81ea7a4
- Datasets 3.0.1
- Tokenizers 0.20.1