Edit model card

wav2vec2-minds14-en

This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5729
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.3811 3.5088 100 6.8598 1.0006
4.9442 7.0175 200 6.6217 1.0018
4.6255 10.5263 300 6.2050 1.0
4.4037 14.0351 400 6.1160 1.0
4.1672 17.5439 500 5.7863 1.0
3.8786 21.0526 600 5.6219 1.0
3.6182 24.5614 700 5.4987 1.0
3.654 28.0702 800 5.6024 1.0
3.4135 31.5789 900 5.5648 1.0
3.3532 35.0877 1000 5.6507 1.0
3.344 38.5965 1100 5.5189 1.0
3.3233 42.1053 1200 5.6830 1.0
3.3983 45.6140 1300 5.5447 1.0
3.2433 49.1228 1400 5.5065 1.0
3.2082 52.6316 1500 5.4783 1.0
3.1958 56.1404 1600 5.5747 1.0
3.1756 59.6491 1700 5.5580 1.0
3.1757 63.1579 1800 5.5556 1.0
3.1758 66.6667 1900 5.6747 1.0
3.1373 70.1754 2000 5.5729 1.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rowjak/wav2vec2-minds14-en

Finetuned
(661)
this model

Evaluation results