emo / README.md
ruba2ksa's picture
Training in progress epoch 2
3bea509
---
library_name: transformers
license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_keras_callback
model-index:
- name: ruba2ksa/emo
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ruba2ksa/emo
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1343
- Train Accuracy: 0.9385
- Validation Loss: 0.1797
- Validation Accuracy: 0.9385
- Train Precision: 0.9410
- Train Recall: 0.9385
- Train F1: 0.9379
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Train Precision | Train Recall | Train F1 | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:-----:|
| 0.4750 | 0.9315 | 0.2028 | 0.9315 | 0.9325 | 0.9315 | 0.9312 | 0 |
| 0.1720 | 0.9375 | 0.1780 | 0.9375 | 0.9396 | 0.9375 | 0.9371 | 1 |
| 0.1343 | 0.9385 | 0.1797 | 0.9385 | 0.9410 | 0.9385 | 0.9379 | 2 |
### Framework versions
- Transformers 4.46.2
- TensorFlow 2.17.1
- Datasets 3.1.0
- Tokenizers 0.20.3