|
--- |
|
license: llama3 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
model-index: |
|
- name: llama-3-8b-lora-law2entity |
|
results: [] |
|
datasets: |
|
- rubenamtz0/law_entity_recognition |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: rubenamtz0/law_entity_recognition |
|
type: alpaca |
|
dataset_prepared_path: |
|
val_set_size: 0.1 |
|
output_dir: ./outputs/lora-law |
|
hub_model_id: rubenamtz0/llama-3-8b-lora-law2entity |
|
|
|
sequence_len: 4096 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: entity-relationship-claim-ft |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 4 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
s2_attention: |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# llama-3-8b-lora-law2entity |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the rubenamtz0/law_entity_recognition dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1490 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 3 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 24 |
|
- total_eval_batch_size: 6 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.2735 | 0.05 | 1 | 0.2923 | |
|
| 0.2852 | 0.25 | 5 | 0.2742 | |
|
| 0.2007 | 0.5 | 10 | 0.2015 | |
|
| 0.1742 | 0.75 | 15 | 0.1807 | |
|
| 0.1854 | 1.0 | 20 | 0.1688 | |
|
| 0.159 | 1.1125 | 25 | 0.1630 | |
|
| 0.1444 | 1.3625 | 30 | 0.1592 | |
|
| 0.1479 | 1.6125 | 35 | 0.1565 | |
|
| 0.1505 | 1.8625 | 40 | 0.1538 | |
|
| 0.1369 | 2.1125 | 45 | 0.1518 | |
|
| 0.1348 | 2.2125 | 50 | 0.1512 | |
|
| 0.1287 | 2.4625 | 55 | 0.1510 | |
|
| 0.1359 | 2.7125 | 60 | 0.1498 | |
|
| 0.1367 | 2.9625 | 65 | 0.1491 | |
|
| 0.1218 | 3.075 | 70 | 0.1491 | |
|
| 0.1285 | 3.325 | 75 | 0.1493 | |
|
| 0.1307 | 3.575 | 80 | 0.1490 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |