File size: 5,407 Bytes
33af9d7 b95afe5 dbb77b9 dda1e5e dbb77b9 731401d 2fca166 33af9d7 b95afe5 33af9d7 dda1e5e 33af9d7 947975d dda1e5e fa9ca7c dda1e5e 33af9d7 dda1e5e 33af9d7 dda1e5e dbb77b9 33af9d7 dda1e5e 33af9d7 947975d dda1e5e 947975d dda1e5e b86e966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
language:
- pt
thumbnail: "Portugues SBERT for the Legal Domain"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
widget:
- source_sentence: "O advogado apresentou as provas ao juíz."
sentences:
- "O juíz leu as provas."
- "O juíz leu o recurso."
- "O juíz atirou uma pedra."
example_title: "Example 1"
model-index:
- name: BERTimbau
results:
- task:
name: STS
type: STS
metrics:
- name: Pearson Correlation - assin Dataset
type: Pearson Correlation
value: 0.76629
- name: Pearson Correlation - assin2 Dataset
type: Pearson Correlation
value: 0.82357
- name: Pearson Correlation - stsb_multi_mt pt Dataset
type: Pearson Correlation
value: 0.79120
---
# rufimelo/Legal-BERTimbau-sts-large
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
rufimelo/Legal-BERTimbau-sts-large is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.
It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-large')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-large')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-large')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results STS
| Model| Assin | Assin2|stsb_multi_mt pt|
| ---------------------------------------- | ---------- | ---------- |---------- |
| Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|
| Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |
| Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|
| Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|
| Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |
| Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|
| Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261|
| Legal-BERTimbau-sts-large-ma-v3| 0.7749| 0.8470| 0.8364|
| ---------------------------------------- | ---------- |---------- |---------- |
| BERTimbau base Fine-tuned for STS|0.78455 | 0.80626|0.82841|
| BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|
| ---------------------------------------- | ---------- |---------- |---------- |
| paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |
| paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |0.84575 |
## Training
rufimelo/Legal-BERTimbau-sts-large is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large.
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin) and [assin2](https://huggingface.co/datasets/assin2) datasets.
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
If you use this work, please cite BERTimbau's work:
```bibtex
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
``` |