DhanOS's picture
Added README.md
b64fd41 verified
|
raw
history blame
3.38 kB
# Deepthought-8B
Deepthought-8B is a small and capable reasoning model built on LLaMA-3.1 8B, designed to make AI reasoning more transparent and controllable. Despite its relatively small size, it achieves sophisticated reasoning capabilities that rival much larger models.
## Model Description
Deepthought-8B is designed with a unique approach to problem-solving, breaking down its thinking into clear, distinct, documented steps. The model outputs its reasoning process in a structured JSON format, making it easier to understand and validate its decision-making process.
### Key Features
- **Transparent Reasoning**: Step-by-step documentation of the thought process
- **Programmable Approach**: Customizable reasoning patterns without model retraining
- **Test-time Compute Scaling**: Flexible reasoning depth based on task complexity
- **Efficient Scale**: Runs on 16GB+ VRAM
- **Structured Output**: JSON-formatted reasoning chains for easy integration
Try out Deepthought-8B on our Ruliad interface: https://chat.ruliad.co
## Technical Requirements
- Python 3.6+
- PyTorch
- Transformers library
- 16GB+ VRAM
- Optional: Flash Attention 2 for improved performance
## Installation
```bash
pip install torch transformers
# Optional: Install Flash Attention 2 for better performance
pip install flash-attn
```
## Usage
1. First, set your HuggingFace token as an environment variable:
```bash
export HF_TOKEN=your_token_here
export HF_HUB_ENABLE_HF_TRANSFER=1
```
2. Use the model in your Python code:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Initialize the model
model_name = "ruliad/Deepthought-8b-llama-v0.01-alpha"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
add_bos_token=False,
trust_remote_code=True,
padding="left",
torch_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2", # Use "default" if flash_attn not installed
use_cache=True,
trust_remote_code=True,
)
```
3. Run the provided example script:
```bash
python Deepthought_inference.py
```
## Example Output
The model provides structured reasoning in JSON format:
```json
{
"step": 1,
"type": "problem_understanding",
"thought": "Understanding the user's objective for the task."
}
```
Each reasoning chain includes multiple steps:
1. Problem understanding
2. Data gathering
3. Analysis
4. Calculation (when applicable)
5. Verification
6. Conclusion drawing
7. Implementation
## Performance
Deepthought-8B demonstrates strong performance across various benchmarks:
- Step-by-step problem-solving
- Coding and mathematical tasks
- Instruction following with transparent reasoning
- Scalable performance with test-time compute
## Limitations
Current known limitations include:
- Complex mathematical reasoning
- Long-context processing
- Edge case handling
## License
The model is available under a commercial license for enterprise use.
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{Deepthought2024,
author = {Ruliad AI},
title = {Deepthought-8B: A Small and Capable Reasoning Model},
year = {2024},
publisher = {Ruliad}
}
```
## Support
For questions and feedback:
- Twitter: @ruliad_ai
- Email: team@ruliad.co