Edit model card

bert-small-finetuned-finetuned

This model is a fine-tuned version of ryantaw/bert-small-finetuned on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0767
  • Accuracy: 0.6119
  • F1 Score: 0.6156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 86
  • eval_batch_size: 86
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score
0.7125 1.0 18 1.0136 0.6011 0.5997
0.604 2.0 36 1.0198 0.6038 0.6058
0.5421 3.0 54 1.0517 0.6065 0.6068
0.4724 4.0 72 1.0767 0.6119 0.6156
0.42 5.0 90 1.1184 0.5768 0.5751
0.3823 6.0 108 1.1217 0.5876 0.5881
0.3312 7.0 126 1.1425 0.6065 0.6053
0.3045 8.0 144 1.1760 0.6065 0.6095
0.2662 9.0 162 1.2044 0.6065 0.6090
0.2403 10.0 180 1.2143 0.6011 0.6011
0.2308 11.0 198 1.2394 0.5903 0.5927
0.2053 12.0 216 1.2589 0.6038 0.6068
0.1808 13.0 234 1.2895 0.6065 0.6071
0.1599 14.0 252 1.3144 0.6065 0.6086
0.1497 15.0 270 1.3386 0.5930 0.5951
0.1383 16.0 288 1.3608 0.5903 0.5931
0.1321 17.0 306 1.3624 0.5876 0.5888
0.1183 18.0 324 1.3810 0.5930 0.5945
0.1196 19.0 342 1.3827 0.5903 0.5927
0.1181 20.0 360 1.3805 0.5903 0.5920

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Safetensors
Model size
28.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ryantaw/bert-small-finetuned-finetuned

Finetuned
(1)
this model