|
--- |
|
license: other |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: microsoft/phi-2 |
|
model-index: |
|
- name: phi-2-sft-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
# phi-2-sft-out |
|
|
|
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2813 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| No log | 0.0 | 1 | 1.7973 | |
|
| 1.9767 | 0.25 | 5290 | 1.4832 | |
|
| 1.8474 | 0.5 | 10580 | 1.4356 | |
|
| 1.8121 | 0.75 | 15870 | 1.4022 | |
|
| 1.8333 | 1.0 | 21160 | 1.3678 | |
|
| 1.6601 | 1.25 | 26450 | 1.3508 | |
|
| 1.5452 | 1.5 | 31740 | 1.3357 | |
|
| 1.7381 | 1.75 | 37030 | 1.3191 | |
|
| 1.6256 | 2.0 | 42320 | 1.3090 | |
|
| 1.5521 | 2.25 | 47610 | 1.2961 | |
|
| 1.8318 | 2.5 | 52900 | 1.2910 | |
|
| 1.6761 | 2.75 | 58190 | 1.2901 | |
|
| 1.6312 | 3.0 | 63480 | 1.2879 | |
|
| 1.7003 | 3.25 | 68770 | 1.2820 | |
|
| 1.6915 | 3.5 | 74060 | 1.2814 | |
|
| 1.5757 | 3.75 | 79350 | 1.2813 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.6.0 |
|
|