tiny_clip / src /lightning_module.py
sachin's picture
Corrected configure_optimizer in lightning module
bd0d978
raw
history blame
3.84 kB
import pytorch_lightning as pl
import torch
import torch.nn as nn
from src import config
from src import loss as loss_utils
from src import metrics
from src import models
class LightningModule(pl.LightningModule):
def __init__(
self,
vision_encoder: models.TinyCLIPVisionEncoder,
text_encoder: models.TinyCLIPTextEncoder,
loss_fn: nn.Module,
hyper_parameters: config.TrainerConfig,
len_train_dl: int,
) -> None:
super().__init__()
self.vision_encoder = vision_encoder
self.text_encoder = text_encoder
self.loss_fn = loss_fn
self.hyper_parameters = hyper_parameters
self.len_train_dl = len_train_dl
def common_step(self, batch: tuple[torch.Tensor, list[str]], step_kind: str) -> torch.Tensor:
text, images = batch
image_features = self.vision_encoder(images)
text_features = self.text_encoder(text)
similarity_matrix = loss_utils.get_similarity_matrix(image_features, text_features)
loss = self.loss_fn(similarity_matrix, image_features, text_features)
img_acc, cap_acc = metrics.metrics(similarity_matrix)
self.log(f"{step_kind}_loss", loss, on_step=False, on_epoch=True)
self.log(f"{step_kind}_img_acc", img_acc, on_step=False, on_epoch=True, prog_bar=True)
self.log(f"{step_kind}_cap_acc", cap_acc, on_step=False, on_epoch=True, prog_bar=True)
return loss
def training_step(self, batch: tuple[torch.Tensor, list[str]], *args: list) -> torch.Tensor:
loss = self.common_step(batch, step_kind="training")
return loss
def validation_step(self, batch: tuple[torch.Tensor, list[str]], *args: list):
_ = self.common_step(batch, step_kind="training")
def configure_optimizers(self):
vision_params = [
{
"params": self.vision_encoder.projection.parameters(),
"lr": self.hyper_parameters.learning_rate,
},
{
"params": self.vision_encoder.base.parameters(),
"lr": self.hyper_parameters.learning_rate / 2,
},
]
caption_params = [
{
"params": self.text_encoder.projection.parameters(),
"lr": self.hyper_parameters.learning_rate,
},
]
loss_params = [
{
"params": self.loss_fn.parameters(),
"lr": self.hyper_parameters.learning_rate,
},
]
if not self.hyper_parameters._model_config.freeze_text_base:
caption_params += [
{
"params": self.text_encoder.base.parameters(),
"lr": self.hyper_parameters.learning_rate / 2,
},
]
if not self.hyper_parameters._model_config.freeze_vision_base:
vision_params += [
{
"params": self.vision_encoder.base.parameters(),
"lr": self.hyper_parameters.learning_rate / 2,
},
]
optimizer = torch.optim.Adam(
vision_params + caption_params + loss_params, lr=self.hyper_parameters.learning_rate
)
if self.hyper_parameters.lr_scheduler:
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=self.hyper_parameters.learning_rate,
total_steps=int(self.trainer.estimated_stepping_batches),
)
return [optimizer], [scheduler]
else:
return optimizer
def on_epoch_end(self):
if self.current_epoch == 0:
for p in self.vision_encoder.base.parameters():
p.requires_grad = True
self.vision_encoder.base.train()