layoutlm-funsd / README.md
sachin18's picture
End of training
3e89b1b verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6788
  • Answer: {'precision': 0.7050592034445641, 'recall': 0.8096415327564895, 'f1': 0.7537399309551209, 'number': 809}
  • Header: {'precision': 0.3014705882352941, 'recall': 0.3445378151260504, 'f1': 0.3215686274509804, 'number': 119}
  • Question: {'precision': 0.7795414462081128, 'recall': 0.8300469483568075, 'f1': 0.8040018190086403, 'number': 1065}
  • Overall Precision: 0.7185
  • Overall Recall: 0.7928
  • Overall F1: 0.7538
  • Overall Accuracy: 0.8119

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8004 1.0 10 1.6077 {'precision': 0.013595166163141994, 'recall': 0.011124845488257108, 'f1': 0.012236573759347382, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.24475524475524477, 'recall': 0.13145539906103287, 'f1': 0.1710445937690898, 'number': 1065} 0.1207 0.0748 0.0923 0.3510
1.4746 2.0 20 1.2888 {'precision': 0.1705521472392638, 'recall': 0.17181705809641531, 'f1': 0.1711822660098522, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4061776061776062, 'recall': 0.49389671361502346, 'f1': 0.4457627118644068, 'number': 1065} 0.3152 0.3337 0.3242 0.5672
1.1291 3.0 30 0.9811 {'precision': 0.5127931769722814, 'recall': 0.5945611866501854, 'f1': 0.5506582713222669, 'number': 809} {'precision': 0.027777777777777776, 'recall': 0.008403361344537815, 'f1': 0.012903225806451613, 'number': 119} {'precision': 0.5457317073170732, 'recall': 0.672300469483568, 'f1': 0.6024400504838031, 'number': 1065} 0.5241 0.6011 0.5599 0.7097
0.86 4.0 40 0.8044 {'precision': 0.5934489402697495, 'recall': 0.761433868974042, 'f1': 0.6670276123443422, 'number': 809} {'precision': 0.18333333333333332, 'recall': 0.09243697478991597, 'f1': 0.12290502793296088, 'number': 119} {'precision': 0.6554694229112834, 'recall': 0.7145539906103286, 'f1': 0.683737646001797, 'number': 1065} 0.6144 0.6964 0.6529 0.7534
0.6873 5.0 50 0.7263 {'precision': 0.6666666666666666, 'recall': 0.7416563658838071, 'f1': 0.7021650087770627, 'number': 809} {'precision': 0.2777777777777778, 'recall': 0.21008403361344538, 'f1': 0.23923444976076552, 'number': 119} {'precision': 0.6648648648648648, 'recall': 0.8084507042253521, 'f1': 0.7296610169491525, 'number': 1065} 0.6503 0.7456 0.6947 0.7838
0.5806 6.0 60 0.6815 {'precision': 0.6598569969356486, 'recall': 0.7985166872682324, 'f1': 0.7225950782997763, 'number': 809} {'precision': 0.25806451612903225, 'recall': 0.20168067226890757, 'f1': 0.22641509433962265, 'number': 119} {'precision': 0.7074829931972789, 'recall': 0.7812206572769953, 'f1': 0.7425256581883088, 'number': 1065} 0.6681 0.7536 0.7083 0.7901
0.5036 7.0 70 0.6550 {'precision': 0.6694473409801877, 'recall': 0.7935723114956736, 'f1': 0.7262443438914026, 'number': 809} {'precision': 0.23076923076923078, 'recall': 0.226890756302521, 'f1': 0.22881355932203387, 'number': 119} {'precision': 0.7226962457337884, 'recall': 0.7953051643192488, 'f1': 0.7572641931157801, 'number': 1065} 0.6744 0.7607 0.7149 0.7975
0.4447 8.0 80 0.6628 {'precision': 0.67570385818561, 'recall': 0.8009888751545118, 'f1': 0.7330316742081447, 'number': 809} {'precision': 0.24390243902439024, 'recall': 0.25210084033613445, 'f1': 0.24793388429752067, 'number': 119} {'precision': 0.7413494809688581, 'recall': 0.8046948356807512, 'f1': 0.7717244484466456, 'number': 1065} 0.6859 0.7702 0.7256 0.7973
0.392 9.0 90 0.6465 {'precision': 0.6974248927038627, 'recall': 0.8034610630407911, 'f1': 0.7466973004020677, 'number': 809} {'precision': 0.31451612903225806, 'recall': 0.3277310924369748, 'f1': 0.32098765432098764, 'number': 119} {'precision': 0.7433476394849785, 'recall': 0.8131455399061033, 'f1': 0.7766816143497759, 'number': 1065} 0.7001 0.7802 0.7380 0.8060
0.3844 10.0 100 0.6466 {'precision': 0.6900212314225053, 'recall': 0.8034610630407911, 'f1': 0.7424328954882924, 'number': 809} {'precision': 0.28440366972477066, 'recall': 0.2605042016806723, 'f1': 0.2719298245614035, 'number': 119} {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065} 0.7114 0.7827 0.7453 0.8170
0.323 11.0 110 0.6688 {'precision': 0.7047930283224401, 'recall': 0.799752781211372, 'f1': 0.7492762015055008, 'number': 809} {'precision': 0.2808219178082192, 'recall': 0.3445378151260504, 'f1': 0.309433962264151, 'number': 119} {'precision': 0.7660869565217391, 'recall': 0.8272300469483568, 'f1': 0.7954853273137698, 'number': 1065} 0.7087 0.7873 0.7459 0.8081
0.3034 12.0 120 0.6660 {'precision': 0.7082429501084598, 'recall': 0.8071693448702101, 'f1': 0.754477180820335, 'number': 809} {'precision': 0.3559322033898305, 'recall': 0.35294117647058826, 'f1': 0.35443037974683544, 'number': 119} {'precision': 0.7871956717763751, 'recall': 0.819718309859155, 'f1': 0.8031278748850045, 'number': 1065} 0.7296 0.7868 0.7571 0.8138
0.2884 13.0 130 0.6788 {'precision': 0.7159956474428727, 'recall': 0.8133498145859085, 'f1': 0.7615740740740741, 'number': 809} {'precision': 0.328125, 'recall': 0.35294117647058826, 'f1': 0.340080971659919, 'number': 119} {'precision': 0.7803365810451727, 'recall': 0.8272300469483568, 'f1': 0.8030993618960802, 'number': 1065} 0.7266 0.7933 0.7585 0.8110
0.2674 14.0 140 0.6781 {'precision': 0.7114967462039046, 'recall': 0.8108776266996292, 'f1': 0.7579433853264009, 'number': 809} {'precision': 0.30597014925373134, 'recall': 0.3445378151260504, 'f1': 0.3241106719367589, 'number': 119} {'precision': 0.7848888888888889, 'recall': 0.8291079812206573, 'f1': 0.8063926940639269, 'number': 1065} 0.7244 0.7928 0.7571 0.8133
0.271 15.0 150 0.6788 {'precision': 0.7050592034445641, 'recall': 0.8096415327564895, 'f1': 0.7537399309551209, 'number': 809} {'precision': 0.3014705882352941, 'recall': 0.3445378151260504, 'f1': 0.3215686274509804, 'number': 119} {'precision': 0.7795414462081128, 'recall': 0.8300469483568075, 'f1': 0.8040018190086403, 'number': 1065} 0.7185 0.7928 0.7538 0.8119

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1