Lava_phi / README.md
sagar007's picture
Upload README.md with huggingface_hub
55b7785 verified
metadata
language:
  - en
tags:
  - vision-language
  - phi
  - llava
  - clip
  - qlora
  - multimodal
license: mit
datasets:
  - laion/instructional-image-caption-data
base_model: microsoft/phi-1_5
library_name: transformers
pipeline_tag: image-to-text

LLaVA-Phi Model

This is a vision-language model based on Microsoft's Phi-1.5 architecture with CLIP for image processing capabilities.

Model Description

  • Base Model: Microsoft Phi-1.5
  • Vision Encoder: CLIP ViT-B/32
  • Training: QLoRA fine-tuning
  • Dataset: Instruct 150K

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
import torch
from PIL import Image

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("sagar007/Lava_phi")
tokenizer = AutoTokenizer.from_pretrained("sagar007/Lava_phi")
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

# For text
def generate_text(prompt):
    inputs = tokenizer(f"human: {prompt}\ngpt:", return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=128)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# For images
def process_image_and_prompt(image_path, prompt):
    image = Image.open(image_path)
    image_tensor = processor(images=image, return_tensors="pt").pixel_values
    
    inputs = tokenizer(f"human: <image>\n{prompt}\ngpt:", return_tensors="pt")
    outputs = model.generate(
        input_ids=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        images=image_tensor,
        max_new_tokens=128
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

Training Details

  • Trained using QLoRA (Quantized Low-Rank Adaptation)
  • 4-bit quantization for efficiency
  • Gradient checkpointing enabled
  • Mixed precision training (bfloat16)

License

MIT License

Citation

@software{llava_phi_2024,
  author = {sagar007},
  title = {LLaVA-Phi: Vision-Language Model},
  year = {2024},
  publisher = {Hugging Face},
  url = {https://huggingface.co/sagar007/Lava_phi}
}