Edit model card

wav2vec2transformerEMR3

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6589
  • Accuracy: 0.7916
  • Precision: 0.7918
  • Recall: 0.7916
  • F1: 0.7896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.4706 1.6420 500 1.4207 0.5409 0.5559 0.5409 0.5180
0.953 3.2841 1000 0.9292 0.7275 0.7438 0.7275 0.7233
0.7575 4.9261 1500 0.7618 0.7616 0.7686 0.7616 0.7610
0.6084 6.5681 2000 0.7485 0.7559 0.7658 0.7559 0.7524
0.5221 8.2102 2500 0.6990 0.7711 0.7767 0.7711 0.7691
0.431 9.8522 3000 0.6967 0.7752 0.7796 0.7752 0.7719
0.3814 11.4943 3500 0.6523 0.7867 0.7875 0.7867 0.7856
0.3461 13.1363 4000 0.6589 0.7916 0.7918 0.7916 0.7896
0.3405 14.7783 4500 0.6703 0.7867 0.7878 0.7867 0.7847

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.20.3
Downloads last month
4
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sagir567/wav2vec2transformerEMR3

Finetuned
(656)
this model