File size: 2,517 Bytes
c89946d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2transformerEMR3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2transformerEMR3
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6589
- Accuracy: 0.7916
- Precision: 0.7918
- Recall: 0.7916
- F1: 0.7896
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.4706 | 1.6420 | 500 | 1.4207 | 0.5409 | 0.5559 | 0.5409 | 0.5180 |
| 0.953 | 3.2841 | 1000 | 0.9292 | 0.7275 | 0.7438 | 0.7275 | 0.7233 |
| 0.7575 | 4.9261 | 1500 | 0.7618 | 0.7616 | 0.7686 | 0.7616 | 0.7610 |
| 0.6084 | 6.5681 | 2000 | 0.7485 | 0.7559 | 0.7658 | 0.7559 | 0.7524 |
| 0.5221 | 8.2102 | 2500 | 0.6990 | 0.7711 | 0.7767 | 0.7711 | 0.7691 |
| 0.431 | 9.8522 | 3000 | 0.6967 | 0.7752 | 0.7796 | 0.7752 | 0.7719 |
| 0.3814 | 11.4943 | 3500 | 0.6523 | 0.7867 | 0.7875 | 0.7867 | 0.7856 |
| 0.3461 | 13.1363 | 4000 | 0.6589 | 0.7916 | 0.7918 | 0.7916 | 0.7896 |
| 0.3405 | 14.7783 | 4500 | 0.6703 | 0.7867 | 0.7878 | 0.7867 | 0.7847 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Tokenizers 0.20.3
|