license: cc-by-nc-4.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Sao10K/Fimbulvetr-10.7B-v1
- saishf/Kuro-Lotus-10.7B
model-index:
- name: Fimbulvetr-Kuro-Lotus-10.7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.54
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.87
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.99
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.95
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.87
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
name: Open LLM Leaderboard
This model is a merge of my personal favourite models, i couldn't decide between them so why not have both? Without MOE cause gpu poor :3
With my own tests it gives kuro-lotus like results without the requirement for a highly detailed character card and stays coherent when roping up to 8K context.
I personally use the "Universal Light" preset in silly tavern, with "alpaca" the results can be short but are longer with "alpaca roleplay".
"Universal Light" preset can be extremely creative but sometimes likes to act for user with some cards, for those i like just the "default" but any preset seems to work!
Benchmarks:
Average 72.73
ARC 69.54
HellaSwag 87.87
MMLU 66.99
TruthfulQA 60.95
Winogrande 84.14
GSM8K 66.87
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: saishf/Kuro-Lotus-10.7B
layer_range: [0, 48]
- model: Sao10K/Fimbulvetr-10.7B-v1
layer_range: [0, 48]
merge_method: slerp
base_model: saishf/Kuro-Lotus-10.7B
parameters:
t:
- filter: self_attn
value: [0.6, 0.7, 0.8, 0.9, 1]
- filter: mlp
value: [0.4, 0.3, 0.2, 0.1, 0]
- value: 0.5
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.73 |
AI2 Reasoning Challenge (25-Shot) | 69.54 |
HellaSwag (10-Shot) | 87.87 |
MMLU (5-Shot) | 66.99 |
TruthfulQA (0-shot) | 60.95 |
Winogrande (5-shot) | 84.14 |
GSM8k (5-shot) | 66.87 |