whisper-small-bn / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
74bfde7
|
raw
history blame
2.04 kB
metadata
language:
  - bn
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: Whisper Small Hi - Sanchit Gandhi
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: hi, split: test'
        metrics:
          - type: wer
            value: 40.38828355674009
            name: Wer

Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1305
  • Wer: 40.3883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1994 0.16 1000 0.2302 58.9519
0.1424 0.32 2000 0.1697 48.0494
0.1379 0.48 3000 0.1434 43.1854
0.1209 0.64 4000 0.1305 40.3883

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1