salohnana2018's picture
update model card README.md
ad26433
metadata
base_model: qarib/bert-base-qarib
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: OTE-NoDapt-ABSA-bert-base-qarib-OrginalHP-FineTune
    results: []

OTE-NoDapt-ABSA-bert-base-qarib-OrginalHP-FineTune

This model is a fine-tuned version of qarib/bert-base-qarib on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1348
  • Precision: 0.7488
  • Recall: 0.7723
  • F1: 0.7604
  • Accuracy: 0.9532

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 25
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1656 1.0 61 0.1196 0.7299 0.7932 0.7603 0.9528
0.08 2.0 122 0.1176 0.7561 0.7678 0.7619 0.9543
0.0501 3.0 183 0.1348 0.7488 0.7723 0.7604 0.9532

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3