whisper-small-ru-v2 / README.md
sam-alavardo-1980's picture
End of training
f7a3d15 verified
metadata
language:
  - ru
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Ru - v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ru
          split: test
          args: 'config: ru, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 11.208788514118268

Whisper Small Ru - v2

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2108
  • Wer Ortho: 15.1680
  • Wer: 11.2088

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.1678 0.9843 1000 0.2046 16.5258 12.3257
0.0885 1.9685 2000 0.1940 15.6577 11.7703
0.0407 2.9528 3000 0.1983 15.1289 11.2725
0.0186 3.9370 4000 0.2108 15.1680 11.2088

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1