metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- MediaTek-Research/Breeze-7B-Instruct-v0_1
- Azure99/blossom-v4-mistral-7b
base_model:
- MediaTek-Research/Breeze-7B-Instruct-v0_1
- Azure99/blossom-v4-mistral-7b
Breezeblossom-v4-mistral-2x7B
Breezeblossom-v4-mistral-2x7B is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
🧩 Configuration
base_model: MediaTek-Research/Breeze-7B-Instruct-v0_1
gate_mode: hidden
dtype: float16
experts:
- source_model: MediaTek-Research/Breeze-7B-Instruct-v0_1
positive_prompts: [ "<s>You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan. [INST] 你好,請問你可以完成什麼任務? [/INST] "]
- source_model: Azure99/blossom-v4-mistral-7b
positive_prompts: ["A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions. \n|Human|: hello\n|Bot|: "]
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "sam-ezai/Breezeblossom-v4-mistral-2x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])