refactored the readme

#1
by samadpls - opened
Files changed (1) hide show
  1. README.md +56 -2
README.md CHANGED
@@ -1,9 +1,63 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
- ## Training procedure
5
 
6
- ### Framework versions
7
 
 
 
 
 
 
 
 
 
 
8
 
9
  - PEFT 0.5.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ metrics:
7
+ - accuracy
8
+ pipeline_tag: text-classification
9
+ tags:
10
+ - opensource
11
+ - finetunning
12
+ - llm
13
+ - sentiment-analysis
14
  ---
 
15
 
16
+ ## Model Description
17
 
18
+ This repository contains a fine-tuned sentiment analysis model based on the `distilbert-base-uncased` architecture, trained on the "shawhin/imdb-truncated" dataset. The model is designed for text classification tasks in the English language.
19
+
20
+ ## Model Performance
21
+
22
+ The model's performance is evaluated based on accuracy, a common metric for text classification tasks. The specific performance metrics may vary depending on the use case and dataset.
23
+
24
+ ## Training Procedure
25
+
26
+ ### Framework Versions
27
 
28
  - PEFT 0.5.0
29
+
30
+ ### Dataset
31
+
32
+ The model is trained on the "shawhin/imdb-truncated" dataset, which is a truncated version of the IMDb movie review dataset. It contains labeled movie reviews with binary sentiment labels (positive or negative).
33
+
34
+ ## Fine-Tuning Details
35
+
36
+ The model is fine-tuned using the `distilbert-base-uncased` architecture, a smaller and faster version of BERT, well-suited for various NLP tasks.
37
+
38
+ ## How to Use
39
+
40
+ You can use this fine-tuned sentiment analysis model for various text classification tasks, including sentiment analysis, text categorization, and more. To use the model, you can easily load it with the Hugging Face Transformers library and integrate it into your Python applications.
41
+
42
+ Here's an example of how to load and use the model:
43
+
44
+ ```python
45
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
46
+
47
+ # Load the fine-tuned model
48
+ model = AutoModelForSequenceClassification.from_pretrained("samadpls/sentiment-analysis")
49
+
50
+ # Load the tokenizer
51
+ tokenizer = AutoTokenizer.from_pretrained("your-model-name")
52
+
53
+ # Perform inference
54
+ text = "This is a great movie!"
55
+ inputs = tokenizer(text, return_tensors="pt")
56
+ outputs = model(**inputs)
57
+ predicted_label = outputs.logits.argmax().item()
58
+
59
+ # Print the predicted sentiment label
60
+ print("Predicted Sentiment: Positive" if predicted_label == 1 else "Predicted Sentiment: Negative")
61
+ ```
62
+ # License
63
+ This model is distributed under the Apache License 2.0. For more details, see the [LICENSE](LICENSE) file.