samadpls's picture
Update README.md
5e7e89c verified
|
raw
history blame
2.76 kB
metadata
library_name: transformers
license: mit
datasets:
  - jhu-clsp/jfleg
language:
  - en
base_model:
  - google-t5/t5-base
pipeline_tag: text2text-generation

πŸ“š Model Card for Grammar Correction Model

This is a grammar correction model based on the Google T5 architecture, fine-tuned on the JHU-CLSP/JFLEG dataset for text correction tasks. ✍️

Model Details

This model is designed to correct grammatical errors in English sentences. It was fine-tuned using the JFLEG dataset, which provides examples of grammatically correct sentences.

  • Follow the Developer: Abdul Samad Siddiqui (@samadpls) πŸ‘¨β€πŸ’»

Uses

This model can be directly used to correct grammar and spelling mistakes in sentences. βœ…

Example Usage

Here's a basic code snippet to demonstrate how to use the model:

from transformers import T5ForConditionalGeneration, T5Tokenizer

# Load the model and tokenizer
model_name = "samadpls/t5-base-grammar-checker"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)

# Example input
example_1 = "grammar: This sentences, has bads grammar and spelling!"

# Tokenize and generate corrected output
inputs = tokenizer.encode(example_1, return_tensors="pt")
outputs = model.generate(inputs)
corrected_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)

print("Corrected Sentence:", corrected_sentence)

Training Details

The model was trained on the JHU CLSP JFLEG dataset, which includes various examples of sentences with grammatical errors and their corrections. πŸ“–

Training Procedure

  • Training Hardware: Personal laptop with NVIDIA GeForce MX230 GDDR5 and 16GB RAM πŸ’»
  • Training Time: Approximately 1 hour ⏳
  • Hyperparameters: No specific hyperparameters were set for training.

Training Logs

Step Training Loss Validation Loss
1 0.9282 0.6091
2 0.6182 0.5561
3 0.6279 0.5345
4 0.6345 0.5147
5 0.5636 0.5076
6 0.6009 0.4928
7 0.5469 0.4950
8 0.5797 0.4834
9 0.5619 0.4818
10 0.6342 0.4788
11 0.5481 0.4786

Final Training Metrics

  • Training Runtime: 1508.2528 seconds ⏱️
  • Training Samples per Second: 1.799
  • Training Steps per Second: 0.225
  • Final Training Loss: 0.5925
  • Final Epoch: 1.0

Model Card Contact

For inquiries, please contact Abdul Samad Siddiqui via GitHub. πŸ“¬