EC2 Default User
updating training dataset in model card
c32a6bc
metadata
language: en
tags:
  - sagemaker
  - bart
  - summarization
license: apache-2.0
datasets:
  - tomasg25/scientific_lay_summarisation
model-index:
  - name: bart-large-tomasg25/scientific_lay_summarisation
    results:
      - task:
          name: Abstractive Text Summarization
          type: abstractive-text-summarization
        dataset:
          name: tomasg25/scientific_lay_summarisation
          type: plos
        metrics:
          - name: Validation ROGUE-1
            type: rogue-1
            value: 42.621
          - name: Validation ROGUE-2
            type: rogue-2
            value: 21.9825
          - name: Validation ROGUE-L
            type: rogue-l
            value: 33.034
          - name: Test ROGUE-1
            type: rogue-1
            value: 41.3174
          - name: Test ROGUE-2
            type: rogue-2
            value: 20.8716
          - name: Test ROGUE-L
            type: rogue-l
            value: 32.1337
widget: null

bart-large-tomasg25/scientific_lay_summarisation

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at:

Hyperparameters

{
"cache_dir": "opt/ml/input",
"dataset_config_name": "plos",
"dataset_name": "tomasg25/scientific_lay_summarisation",
"do_eval": true,
"do_predict": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "facebook/bart-large",
"num_train_epochs": 1,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"predict_with_generate": true,
"seed": 7

}

Usage

from transformers import pipeline
summarizer = pipeline("summarization", model="sambydlo/bart-large-tomasg25/scientific_lay_summarisation")
article = "Food production is a major driver of greenhouse gas (GHG) emissions, water and land use, and dietary risk factors are contributors to non-communicable diseases. Shifts in dietary patterns can therefore potentially provide benefits for both the environment and health. However, there is uncertainty about the magnitude of these impacts, and the dietary changes necessary to achieve them. We systematically review the evidence on changes in GHG emissions, land use, and water use, from shifting current dietary intakes to environ- mentally sustainable dietary patterns. We find 14 common sustainable dietary patterns across reviewed studies, with reductions as high as 70–80% of GHG emissions and land use, and 50% of water use (with medians of about 20–30% for these indicators across all studies) possible by adopting sustainable dietary patterns. Reductions in environmental footprints were generally proportional to the magnitude of animal-based food restriction. Dietary shifts also yielded modest benefits in all-cause mortality risk. Our review reveals that environmental and health benefits are possible by shifting current Western diets to a variety of more sustainable dietary patterns."
summarizer(article)

Results

key value
eval_rouge1 41.3889
eval_rouge2 13.3641
eval_rougeL 24.3154
eval_rougeLsum 36.612
test_rouge1 41.4786
test_rouge2 13.3787
test_rougeL 24.1558
test_rougeLsum 36.7723