metadata
language:
- lg
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
- common_voice
- lg
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-300m-lg
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: sv-SE
metrics:
- name: Test WER
type: wer
value: 78.89
- name: Test CER
type: cer
value: 15.16
wav2vec2-xls-r-300m-lg
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON_VOICE - LG dataset. It achieves the following results on the evaluation set:
- Loss: 0.6989
- Wer: 0.8529
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.9089 | 6.33 | 500 | 2.8983 | 1.0002 |
2.5754 | 12.66 | 1000 | 1.8710 | 1.0 |
1.4093 | 18.99 | 1500 | 0.7195 | 0.8547 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with splittest
python eval.py --model_id samitizerxu/wav2vec2-xls-r-300m-lg --dataset mozilla-foundation/common_voice_7_0 --config lg --split test