metadata
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- et
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: sammy786/wav2vec2-xlsr-estonian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: et
metrics:
- name: Test WER
type: wer
value: 23.61
- name: Test CER
type: cer
value: 4.6
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: et
metrics:
- name: Test WER
type: wer
value: 61.83
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: et
metrics:
- name: Test WER
type: wer
value: 67.43
sammy786/wav2vec2-xlsr-estonian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - et dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets):
- Loss: 17.94
- Wer: 30.38
Model description
"facebook/wav2vec2-xls-r-1b" was finetuned.
Intended uses & limitations
More information needed
Training and evaluation data
Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv
Training procedure
For creating the train dataset, all possible datasets were appended and 90-10 split was used.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000045637994662983496
- train_batch_size: 8
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Step | Training Loss | Validation Loss | Wer |
---|---|---|---|
200 | 3.729100 | 1.096018 | 0.959867 |
400 | 0.996900 | 0.310228 | 0.443600 |
600 | 0.762900 | 0.210873 | 0.346117 |
800 | 0.621400 | 0.200381 | 0.331513 |
1000 | 0.408000 | 0.196382 | 0.322014 |
1200 | 0.320200 | 0.176281 | 0.312515 |
1400 | 0.315300 | 0.179433 | 0.303847 |
1600 | 0.445800 | 0.420985 | 0.315839 |
1800 | 0.644600 | 0.433833 | 0.354904 |
2000 | 0.550900 | 0.327117 | 0.336500 |
2200 | 0.498600 | 0.289830 | 0.325457 |
2400 | 0.488300 | 0.294309 | 0.314177 |
2600 | 0.491700 | 0.311175 | 0.318689 |
2800 | 0.508500 | 0.314744 | 0.320470 |
3000 | 0.499900 | 0.314834 | 0.320589 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id sammy786/wav2vec2-xlsr-estonian --dataset mozilla-foundation/common_voice_8_0 --config et --split test