Upload convert_aquila_weights_to_hf.py
#3
by
sammysun0711
- opened
- convert_aquila_weights_to_hf.py +301 -0
convert_aquila_weights_to_hf.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import argparse
|
15 |
+
import gc
|
16 |
+
import json
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
import shutil
|
20 |
+
import warnings
|
21 |
+
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
try:
|
28 |
+
from transformers import LlamaTokenizerFast
|
29 |
+
except ImportError as e:
|
30 |
+
warnings.warn(e)
|
31 |
+
warnings.warn(
|
32 |
+
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
33 |
+
)
|
34 |
+
LlamaTokenizerFast = None
|
35 |
+
|
36 |
+
"""
|
37 |
+
Sample usage:
|
38 |
+
|
39 |
+
```
|
40 |
+
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
41 |
+
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
42 |
+
```
|
43 |
+
|
44 |
+
Thereafter, models can be loaded via:
|
45 |
+
|
46 |
+
```py
|
47 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
48 |
+
|
49 |
+
model = LlamaForCausalLM.from_pretrained("/output/path")
|
50 |
+
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
|
51 |
+
```
|
52 |
+
|
53 |
+
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
54 |
+
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
55 |
+
"""
|
56 |
+
|
57 |
+
INTERMEDIATE_SIZE_MAP = {
|
58 |
+
"7B": 11008,
|
59 |
+
"13B": 13824,
|
60 |
+
"30B": 17920,
|
61 |
+
"65B": 22016,
|
62 |
+
}
|
63 |
+
NUM_SHARDS = {
|
64 |
+
"7B": 1,
|
65 |
+
"13B": 2,
|
66 |
+
"30B": 4,
|
67 |
+
"65B": 8,
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def compute_intermediate_size(n):
|
72 |
+
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
|
73 |
+
|
74 |
+
|
75 |
+
def read_json(path):
|
76 |
+
with open(path, "r") as f:
|
77 |
+
return json.load(f)
|
78 |
+
|
79 |
+
|
80 |
+
def write_json(text, path):
|
81 |
+
with open(path, "w") as f:
|
82 |
+
json.dump(text, f)
|
83 |
+
|
84 |
+
|
85 |
+
def write_model(model_path, input_base_path, model_size):
|
86 |
+
os.makedirs(model_path, exist_ok=True)
|
87 |
+
tmp_model_path = os.path.join(model_path, "tmp")
|
88 |
+
os.makedirs(tmp_model_path, exist_ok=True)
|
89 |
+
|
90 |
+
|
91 |
+
#params = read_json(os.path.join(input_base_path, "params.json"))
|
92 |
+
params = read_json(os.path.join(input_base_path, "config.json"))
|
93 |
+
print("params: ", params)
|
94 |
+
|
95 |
+
num_shards = NUM_SHARDS[model_size]
|
96 |
+
n_layers = params["n_layers"]
|
97 |
+
n_heads = params["n_heads"]
|
98 |
+
n_heads_per_shard = n_heads // num_shards
|
99 |
+
dim = params["dim"]
|
100 |
+
dims_per_head = dim // n_heads
|
101 |
+
base = 10000.0
|
102 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
103 |
+
|
104 |
+
"""
|
105 |
+
params = {}
|
106 |
+
num_shards = 1
|
107 |
+
n_layers = 32
|
108 |
+
n_heads = 32
|
109 |
+
n_heads_per_shard = n_heads // num_shards
|
110 |
+
dim = 4096
|
111 |
+
dims_per_head = dim // n_heads
|
112 |
+
base = 10000.0
|
113 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
114 |
+
|
115 |
+
params["n_layers"] = n_layers
|
116 |
+
params["n_heads"] = n_heads
|
117 |
+
params["dim"] = dim
|
118 |
+
params["norm_eps"] = 1e-05
|
119 |
+
"""
|
120 |
+
|
121 |
+
# permute for sliced rotary
|
122 |
+
def permute(w):
|
123 |
+
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
|
124 |
+
|
125 |
+
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
|
126 |
+
# Load weights
|
127 |
+
if model_size == "7B":
|
128 |
+
# Not sharded
|
129 |
+
# (The sharded implementation would also work, but this is simpler.)
|
130 |
+
#loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
131 |
+
loaded = torch.load(os.path.join(input_base_path, "pytorch_model.bin"), map_location="cpu")
|
132 |
+
else:
|
133 |
+
# Sharded
|
134 |
+
loaded = [
|
135 |
+
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
|
136 |
+
for i in range(num_shards)
|
137 |
+
]
|
138 |
+
param_count = 0
|
139 |
+
index_dict = {"weight_map": {}}
|
140 |
+
for layer_i in range(n_layers):
|
141 |
+
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
|
142 |
+
if model_size == "7B":
|
143 |
+
# Unsharded
|
144 |
+
state_dict = {
|
145 |
+
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
146 |
+
loaded[f"layers.{layer_i}.attention.wq.weight"]
|
147 |
+
),
|
148 |
+
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
149 |
+
loaded[f"layers.{layer_i}.attention.wk.weight"]
|
150 |
+
),
|
151 |
+
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
|
152 |
+
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
|
153 |
+
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
|
154 |
+
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
|
155 |
+
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
|
156 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
|
157 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
|
158 |
+
}
|
159 |
+
else:
|
160 |
+
# Sharded
|
161 |
+
# Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint
|
162 |
+
# becoming 37GB instead of 26GB for some reason.
|
163 |
+
state_dict = {
|
164 |
+
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
|
165 |
+
f"layers.{layer_i}.attention_norm.weight"
|
166 |
+
].clone(),
|
167 |
+
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
|
168 |
+
f"layers.{layer_i}.ffn_norm.weight"
|
169 |
+
].clone(),
|
170 |
+
}
|
171 |
+
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
|
172 |
+
torch.cat(
|
173 |
+
[
|
174 |
+
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
175 |
+
for i in range(num_shards)
|
176 |
+
],
|
177 |
+
dim=0,
|
178 |
+
).reshape(dim, dim)
|
179 |
+
)
|
180 |
+
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
|
181 |
+
torch.cat(
|
182 |
+
[
|
183 |
+
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
184 |
+
for i in range(num_shards)
|
185 |
+
],
|
186 |
+
dim=0,
|
187 |
+
).reshape(dim, dim)
|
188 |
+
)
|
189 |
+
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
|
190 |
+
[
|
191 |
+
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
192 |
+
for i in range(num_shards)
|
193 |
+
],
|
194 |
+
dim=0,
|
195 |
+
).reshape(dim, dim)
|
196 |
+
|
197 |
+
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
|
198 |
+
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
|
199 |
+
)
|
200 |
+
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
|
201 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
|
202 |
+
)
|
203 |
+
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
|
204 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
|
205 |
+
)
|
206 |
+
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
|
207 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
|
208 |
+
)
|
209 |
+
|
210 |
+
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
211 |
+
for k, v in state_dict.items():
|
212 |
+
index_dict["weight_map"][k] = filename
|
213 |
+
param_count += v.numel()
|
214 |
+
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
215 |
+
|
216 |
+
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
|
217 |
+
if model_size == "7B":
|
218 |
+
# Unsharded
|
219 |
+
state_dict = {
|
220 |
+
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
|
221 |
+
"model.norm.weight": loaded["norm.weight"],
|
222 |
+
"lm_head.weight": loaded["output.weight"],
|
223 |
+
}
|
224 |
+
else:
|
225 |
+
state_dict = {
|
226 |
+
"model.norm.weight": loaded[0]["norm.weight"],
|
227 |
+
"model.embed_tokens.weight": torch.cat(
|
228 |
+
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
|
229 |
+
),
|
230 |
+
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
|
231 |
+
}
|
232 |
+
|
233 |
+
for k, v in state_dict.items():
|
234 |
+
index_dict["weight_map"][k] = filename
|
235 |
+
param_count += v.numel()
|
236 |
+
torch.save(state_dict, os.path.join(tmp_model_path, filename))
|
237 |
+
|
238 |
+
# Write configs
|
239 |
+
index_dict["metadata"] = {"total_size": param_count * 2}
|
240 |
+
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
|
241 |
+
|
242 |
+
config = LlamaConfig(
|
243 |
+
hidden_size=dim,
|
244 |
+
intermediate_size=compute_intermediate_size(dim),
|
245 |
+
num_attention_heads=params["n_heads"],
|
246 |
+
num_hidden_layers=params["n_layers"],
|
247 |
+
rms_norm_eps=params["norm_eps"],
|
248 |
+
)
|
249 |
+
config.save_pretrained(tmp_model_path)
|
250 |
+
|
251 |
+
# Make space so we can load the model properly now.
|
252 |
+
del state_dict
|
253 |
+
del loaded
|
254 |
+
gc.collect()
|
255 |
+
|
256 |
+
print("Loading the checkpoint in a Llama model.")
|
257 |
+
model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
258 |
+
# Avoid saving this as part of the config.
|
259 |
+
del model.config._name_or_path
|
260 |
+
|
261 |
+
print("Saving in the Transformers format.")
|
262 |
+
model.save_pretrained(model_path)
|
263 |
+
shutil.rmtree(tmp_model_path)
|
264 |
+
|
265 |
+
|
266 |
+
def write_tokenizer(tokenizer_path, input_tokenizer_path):
|
267 |
+
# Initialize the tokenizer based on the `spm` model
|
268 |
+
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
|
269 |
+
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
|
270 |
+
tokenizer = tokenizer_class(input_tokenizer_path)
|
271 |
+
tokenizer.save_pretrained(tokenizer_path)
|
272 |
+
|
273 |
+
|
274 |
+
def main():
|
275 |
+
parser = argparse.ArgumentParser()
|
276 |
+
parser.add_argument(
|
277 |
+
"--input_dir",
|
278 |
+
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
|
279 |
+
)
|
280 |
+
parser.add_argument(
|
281 |
+
"--model_size",
|
282 |
+
choices=["7B", "13B", "30B", "65B", "tokenizer_only"],
|
283 |
+
)
|
284 |
+
parser.add_argument(
|
285 |
+
"--output_dir",
|
286 |
+
help="Location to write HF model and tokenizer",
|
287 |
+
)
|
288 |
+
args = parser.parse_args()
|
289 |
+
if args.model_size != "tokenizer_only":
|
290 |
+
write_model(
|
291 |
+
model_path=args.output_dir,
|
292 |
+
#input_base_path=os.path.join(args.input_dir, args.model_size),
|
293 |
+
input_base_path=args.input_dir,
|
294 |
+
model_size=args.model_size,
|
295 |
+
)
|
296 |
+
#spm_path = os.path.join(args.input_dir, "tokenizer.model")
|
297 |
+
#write_tokenizer(args.output_dir, spm_path)
|
298 |
+
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
main()
|