t5-small-LoRA-TweetSumm-1724701402

This model is a fine-tuned version of google-t5/t5-small on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0811
  • Rouge1: 0.4387
  • Rouge2: 0.196
  • Rougel: 0.3605
  • Rougelsum: 0.4055
  • Gen Len: 49.5909
  • F1: 0.8896
  • Precision: 0.8881
  • Recall: 0.8913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
2.3972 1.0 110 2.1384 0.4219 0.1801 0.3545 0.3925 49.9818 0.8833 0.8806 0.8861
2.2593 2.0 220 2.0982 0.4125 0.1843 0.3448 0.3837 49.9091 0.8853 0.8822 0.8886
1.9318 3.0 330 2.0811 0.4387 0.196 0.3605 0.4055 49.5909 0.8896 0.8881 0.8913

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for samuellimabraz/t5-small-lora-finetune-tweetsumm

Base model

google-t5/t5-small
Adapter
(36)
this model

Dataset used to train samuellimabraz/t5-small-lora-finetune-tweetsumm

Evaluation results