librarian-bot's picture
Librarian Bot: Add base_model information to model
78a7077
|
raw
history blame
2.18 kB
metadata
language:
  - es
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - facebook/multilingual_librispeech
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Small Es - Sanchit Gandhi
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Multilingual LibriSpeech
          type: facebook/multilingual_librispeech
          args: 'config: es, split: test'
        metrics:
          - type: wer
            value: 60.16226172047142
            name: Wer

Whisper Small Es - Sanchit Gandhi

This model is a fine-tuned version of openai/whisper-medium on the Multilingual LibriSpeech dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2668
  • Wer: 60.1623

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-08
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.2112 0.2 500 1.7394 61.1126
1.4913 0.4 1000 1.3758 62.8143
1.6651 0.6 1500 1.3100 61.3261
1.7031 0.8 2000 1.2752 60.5261
1.4289 1.0 2500 1.2668 60.1623

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.0
  • Datasets 2.6.2.dev0
  • Tokenizers 0.12.1