Edit model card

BERT multilingual basecased finetuned with NSMC

This model is a fine-tune checkpoint of bert-base-multilingual-cased, fine-tuned on NSMC(Naver Sentiment Movie Corpus).

Usage

You can use this model directly with a pipeline for sentiment-analysis:

>>> from transformers import pipeline
>>> classifier = pipeline(
    "sentiment-analysis", model="sangrimlee/bert-base-multilingual-cased-nsmc"
)
>>> classifier("ํ ...ํฌ์Šคํ„ฐ๋ณด๊ณ  ์ดˆ๋”ฉ์˜ํ™”์ค„....์˜ค๋ฒ„์—ฐ๊ธฐ์กฐ์ฐจ ๊ฐ€๋ณ์ง€ ์•Š๊ตฌ๋‚˜.")
>>> classifier("์•ก์…˜์ด ์—†๋Š”๋ฐ๋„ ์žฌ๋ฏธ ์žˆ๋Š” ๋ช‡์•ˆ๋˜๋Š” ์˜ํ™”")

[{'label': 'negative', 'score': 0.9642567038536072}]
[{'label': 'positive', 'score': 0.9970554113388062}]
Downloads last month
1,963
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.