BERT multilingual basecased finetuned with NSMC
This model is a fine-tune checkpoint of bert-base-multilingual-cased, fine-tuned on NSMC(Naver Sentiment Movie Corpus).
Usage
You can use this model directly with a pipeline for sentiment-analysis:
>>> from transformers import pipeline
>>> classifier = pipeline(
"sentiment-analysis", model="sangrimlee/bert-base-multilingual-cased-nsmc"
)
>>> classifier("ํ ...ํฌ์คํฐ๋ณด๊ณ ์ด๋ฉ์ํ์ค....์ค๋ฒ์ฐ๊ธฐ์กฐ์ฐจ ๊ฐ๋ณ์ง ์๊ตฌ๋.")
>>> classifier("์ก์
์ด ์๋๋ฐ๋ ์ฌ๋ฏธ ์๋ ๋ช์๋๋ ์ํ")
[{'label': 'negative', 'score': 0.9642567038536072}]
[{'label': 'positive', 'score': 0.9970554113388062}]
- Downloads last month
- 1,552
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.