Edit model card

wav2vec2-base-finetuned-mednames1

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5263
  • Accuracy: 0.9727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2881 1.0 22 2.2690 0.2273
2.2234 2.0 44 2.1631 0.2273
1.9756 3.0 66 1.9277 0.5182
1.7191 4.0 88 1.6293 0.6818
1.4663 5.0 110 1.3919 0.7545
1.27 6.0 132 1.1689 0.8182
1.1112 7.0 154 1.0144 0.8364
0.9623 8.0 176 0.9137 0.8545
0.8764 9.0 198 0.7901 0.8909
0.7776 10.0 220 0.7229 0.8727
0.7266 11.0 242 0.6335 0.9
0.6379 12.0 264 0.5848 0.9636
0.6121 13.0 286 0.5509 0.9273
0.5732 14.0 308 0.5263 0.9727
0.5579 15.0 330 0.5221 0.9727

Framework versions

  • Transformers 4.27.2
  • Pytorch 1.11.0+cu102
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using santhosh-4000/wav2vec2-base-finetuned-mednames1 1