santhosh643's picture
End of training
066844b verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - medical_speech_transcription
metrics:
  - wer
model-index:
  - name: whisper_fine_tune_Santhosh
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical Speech, Transcription, and Intent
          type: medical_speech_transcription
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 4.31026474686484

whisper_fine_tune_Santhosh

This model is a fine-tuned version of openai/whisper-medium on the Medical Speech, Transcription, and Intent dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0725
  • Wer: 4.3103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5679 0.2825 100 0.2478 13.0980
0.1266 0.5650 200 0.1474 8.1003
0.0872 0.8475 300 0.1034 5.9266
0.0399 1.1299 400 0.0865 5.3507
0.0229 1.4124 500 0.0771 4.1709
0.0259 1.6949 600 0.0725 4.3103

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.1.dev0
  • Tokenizers 0.19.1