uzbek-stt-3 / README.md
sarahai's picture
Update README.md
1dd15c1 verified
---
library_name: transformers
tags:
- speech-to-txt
- uzbek stt
- uzbek tts
license: apache-2.0
language:
- uz
pipeline_tag: automatic-speech-recognition
---
# Model Card for Model ID
This model is a fine-tuned version of oyqiz/uzbek_stt based mainly on laws and military related dataset.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Sara Musaeva
- **Funded by:** SSD
- **Model type:** Transformers
- **Language(s) (NLP):** Uzbek
- **Finetuned from model:** Oyqiz/uzbek-stt
### Model Sources
<!-- Provide the basic links for the model. -->
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
Intended for Speech-to-text conversion
## How to Get Started with the Model
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torch
import torchaudio
model_name = "sarahai/uzbek-stt-3"
model = Wav2Vec2ForCTC.from_pretrained(model_name)
processor = Wav2Vec2Processor.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def load_and_preprocess_audio(file_path):
speech_array, sampling_rate = torchaudio.load(file_path)
if sampling_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
speech_array = resampler(speech_array)
return speech_array.squeeze().numpy()
def replace_unk(transcription):
return transcription.replace("[UNK]", "ʼ")
audio_file = "/content/audio_2024-08-13_15-20-53.ogg"
speech_array = load_and_preprocess_audio(audio_file)
input_values = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_values.to(device)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
transcription_text = replace_unk(transcription[0])
print("Transcription:", transcription_text)
```