|
--- |
|
license: mit |
|
base_model: dbmdz/bert-base-turkish-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- turkish-wiki_ner |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: bert-base-turkish-uncased-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: turkish-wiki_ner |
|
type: turkish-wiki_ner |
|
config: turkish-WikiNER |
|
split: validation |
|
args: turkish-WikiNER |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.7821495486288537 |
|
language: |
|
- tr |
|
widget: |
|
- text: "9 Ekim 1820'de Guayaquil bağımsızlığını kazanan ilk Ekvador şehridir." |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-turkish-uncased-ner |
|
|
|
This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on the turkish-wiki_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2603 |
|
- F1: 0.7821 |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of dbmdz/bert-base-turkish-uncased on the turkish-wiki_ner dataset. The training dataset consists of 18,967 samples, and the validation dataset consists of 1,000 samples, both derived from Wikipedia data. |
|
|
|
|
|
For more detailed information, please visit this link: https://huggingface.co/datasets/turkish-nlp-suite/turkish-wikiNER |
|
- |
|
Labels: |
|
|
|
<ul> |
|
<li>CARDINAL</li> |
|
<li>DATE</li> |
|
<li>EVENT</li> |
|
<li>FAC</li> |
|
<li>GPE</li> |
|
<li>LANGUAGE</li> |
|
<li>LAW</li> |
|
<li>LOC</li> |
|
<li>MONEY</li> |
|
<li>NORP</li> |
|
<li>ORDINAL</li> |
|
<li>ORG</li> |
|
<li>PERCENT</li> |
|
<li>PERSON</li> |
|
<li>PRODUCT</li> |
|
<li>QUANTITY</li> |
|
<li>TIME</li> |
|
<li>TITLE</li> |
|
<li>WORK_OF_ART</li> |
|
</ul> |
|
|
|
Fine-Tuning Process : https://github.com/saribasmetehan/bert-base-turkish-uncased-ner |
|
- |
|
## Example |
|
```markdown |
|
from transformers import pipeline |
|
text = "Bu toplam sıfır ise, Newton'ın birinci yasası cismin hareket durumunun değişmeyeceğini söyler." |
|
model_id = saribasmetehan/bert-base-turkish-uncased-ner" |
|
ner = pipeline("ner",model = model_id) |
|
preds= ner(text, aggregation_strategy = "simple") |
|
|
|
pd.DataFrame(preds) |
|
|
|
``` |
|
|
|
## Load model directly |
|
```markdown |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model_name = "saribasmetehan/bert-base-turkish-uncased-ner" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForTokenClassification.from_pretrained(model_name) |
|
|
|
``` |
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.4 | 1.0 | 1186 | 0.2502 | 0.7703 | |
|
| 0.2227 | 2.0 | 2372 | 0.2439 | 0.7740 | |
|
| 0.1738 | 3.0 | 3558 | 0.2511 | 0.7783 | |
|
| 0.1474 | 4.0 | 4744 | 0.2603 | 0.7821 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |