AviLaBSE

Model description

This is a unified model trained to add other row resourced language dimensions. It can be used to map more than 130 languages to a shared vector space. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval.

Usage

Using the model:

import torch
from transformers import BertModel, BertTokenizerFast


tokenizer = BertTokenizerFast.from_pretrained("sartifyllc/AviLaBSE")
model = BertModel.from_pretrained("sartifyllc/AviLaBSE")
model = model.eval()

english_sentences = [
    "dog",
    "Puppies are nice.",
    "I enjoy taking long walks along the beach with my dog.",
]
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)

with torch.no_grad():
    english_outputs = model(**english_inputs)

To get the sentence embeddings, use the pooler output:

english_embeddings = english_outputs.pooler_output

Output for other row resourced languages:

swahili_sentences = [
    "mbwa",
    "Mbwa ni mzuri.",
    "Ninafurahia kutembea kwa muda mrefu kando ya pwani na mbwa wangu.",
]
zulu_sentences = [
    "inja",
    "Inja iyavuma.",
    "Ngithanda ukubhema izinyawo ezidlula emanzini nabanye nomfana wami.",
]

igbo_sentences = [
    "nwa nkịta",
    "Nwa nkịta dị ọma.",
    "Achọrọ m gaa n'okirikiri na ụzọ nke oke na mgbidi na nwa nkịta m."
]

swahili_inputs = tokenizer(swahili_sentences, return_tensors="pt", padding=True)
zulu_inputs = tokenizer(zulu_sentences, return_tensors="pt", padding=True)
igbo_inputs=tokenizer(igbo_sentences, return_tensors="pt", padding=True)

with torch.no_grad():
    swahili_outputs = model(**swahili_inputs)
    zulu_outputs = model(**zulu_inputs)
    igbo_outputs =model(**igbo_inputs)

swahili_embeddings = swahili_outputs.pooler_output
zulu_embeddings = zulu_outputs.pooler_output
igbo_embeddings=igbo_outputs.pooler_output

For similarity between sentences, an L2-norm is recommended before calculating the similarity:

import torch.nn.functional as F

def similarity(embeddings_1, embeddings_2):
    normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
    normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
    return torch.matmul(
        normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
    )


print(similarity(english_embeddings, swahili_embeddings))
print(similarity(english_embeddings, zulu_embeddings))
print(similarity(swahili_embeddings, igbo_embeddings))

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)
Downloads last month
65
Safetensors
Model size
471M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Spaces using sartifyllc/African-Cross-Lingua-Embeddings-Model 2

Collection including sartifyllc/African-Cross-Lingua-Embeddings-Model