Update README.md
Browse files
README.md
CHANGED
@@ -120,8 +120,13 @@ license: apache-2.0
|
|
120 |
---
|
121 |
|
122 |
# AviLaBSE
|
123 |
-
This is a port of the [LaBSE](https://tfhub.dev/google/LaBSE/1) model to PyTorch. It can be used to map 109 languages to a shared vector space.
|
124 |
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
## Usage (Sentence-Transformers)
|
127 |
|
@@ -142,6 +147,71 @@ embeddings = model.encode(sentences)
|
|
142 |
print(embeddings)
|
143 |
```
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
|
147 |
## Evaluation Results
|
@@ -164,5 +234,4 @@ SentenceTransformer(
|
|
164 |
|
165 |
## Citing & Authors
|
166 |
|
167 |
-
Have a look at [LaBSE](https://tfhub.dev/google/LaBSE/
|
168 |
-
|
|
|
120 |
---
|
121 |
|
122 |
# AviLaBSE
|
123 |
+
This is a port of the [LaBSE](https://tfhub.dev/google/LaBSE/1) model to PyTorch. Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. It can be used to map 109 languages to a shared vector space. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval.
|
124 |
|
125 |
+
- Model: [HuggingFace's model hub](https://huggingface.co/sartifyllc/AviLaBSE).
|
126 |
+
- Paper: [arXiv](https://arxiv.org/abs/2007.01852).
|
127 |
+
- Original model: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2).
|
128 |
+
- Blog post: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html).
|
129 |
+
- Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/sartify).
|
130 |
|
131 |
## Usage (Sentence-Transformers)
|
132 |
|
|
|
147 |
print(embeddings)
|
148 |
```
|
149 |
|
150 |
+
```python
|
151 |
+
import torch
|
152 |
+
from transformers import BertModel, BertTokenizerFast
|
153 |
+
|
154 |
+
|
155 |
+
tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
|
156 |
+
model = BertModel.from_pretrained("setu4993/LaBSE")
|
157 |
+
model = model.eval()
|
158 |
+
|
159 |
+
english_sentences = [
|
160 |
+
"dog",
|
161 |
+
"Puppies are nice.",
|
162 |
+
"I enjoy taking long walks along the beach with my dog.",
|
163 |
+
]
|
164 |
+
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)
|
165 |
+
|
166 |
+
with torch.no_grad():
|
167 |
+
english_outputs = model(**english_inputs)
|
168 |
+
```
|
169 |
+
|
170 |
+
To get the sentence embeddings, use the pooler output:
|
171 |
+
|
172 |
+
```python
|
173 |
+
english_embeddings = english_outputs.pooler_output
|
174 |
+
```
|
175 |
+
|
176 |
+
Output for other languages:
|
177 |
+
|
178 |
+
```python
|
179 |
+
italian_sentences = [
|
180 |
+
"cane",
|
181 |
+
"I cuccioli sono carini.",
|
182 |
+
"Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.",
|
183 |
+
]
|
184 |
+
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"]
|
185 |
+
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True)
|
186 |
+
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True)
|
187 |
+
|
188 |
+
with torch.no_grad():
|
189 |
+
italian_outputs = model(**italian_inputs)
|
190 |
+
japanese_outputs = model(**japanese_inputs)
|
191 |
+
|
192 |
+
italian_embeddings = italian_outputs.pooler_output
|
193 |
+
japanese_embeddings = japanese_outputs.pooler_output
|
194 |
+
```
|
195 |
+
|
196 |
+
For similarity between sentences, an L2-norm is recommended before calculating the similarity:
|
197 |
+
|
198 |
+
```python
|
199 |
+
import torch.nn.functional as F
|
200 |
+
|
201 |
+
|
202 |
+
def similarity(embeddings_1, embeddings_2):
|
203 |
+
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
|
204 |
+
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
|
205 |
+
return torch.matmul(
|
206 |
+
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
|
207 |
+
)
|
208 |
+
|
209 |
+
|
210 |
+
print(similarity(english_embeddings, italian_embeddings))
|
211 |
+
print(similarity(english_embeddings, japanese_embeddings))
|
212 |
+
print(similarity(italian_embeddings, japanese_embeddings))
|
213 |
+
```
|
214 |
+
|
215 |
|
216 |
|
217 |
## Evaluation Results
|
|
|
234 |
|
235 |
## Citing & Authors
|
236 |
|
237 |
+
Have a look at [LaBSE](https://tfhub.dev/google/LaBSE/2) for the respective publication that describes LaBSE.
|
|