Edit model card

llama-airo-3

Built with Axolotl

Details

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the jondurbin/airoboros-3.2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8437

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.1845 0.0 1 1.1821
0.9328 0.25 114 0.9228
0.8961 0.5 228 0.8713
0.824 0.75 342 0.8437

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Eval Results

Benchmark Model agieval gpt4all bigbench truthfulqa Average
nous llama-airo-3 36.59 72.24 39.26 56.3 51.1
nous meta-llama/Meta-Llama-3-8B 31.1 69.95 36.7 43.91 45.42
Benchmark Model winogrande arc gsm8k mmlu truthfulqa hellaswag Average
openllm llama-airo-3 78.22 61.01 56.33 64.79 56.35 82.42 66.52
openllm Meta-Llama-3-8B 77.58 57.51 50.87 65.04 43.93 82.09 62.84

Detailed Results: https://github.com/saucam/model_evals/tree/main/saucam/llama-airo-3

Downloads last month
8
Safetensors
Model size
8.03B params
Tensor type
FP16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for saucam/llama-airo-3

Adapter
(533)
this model

Dataset used to train saucam/llama-airo-3