|
--- |
|
language: tr |
|
--- |
|
|
|
# Turkish Text Classification |
|
|
|
This model is a fine-tune model of https://github.com/stefan-it/turkish-bert by using text classification data where there are 7 categories as follows |
|
|
|
``` |
|
code_to_label={ |
|
'LABEL_0': 'dunya ', |
|
'LABEL_1': 'ekonomi ', |
|
'LABEL_2': 'kultur ', |
|
'LABEL_3': 'saglik ', |
|
'LABEL_4': 'siyaset ', |
|
'LABEL_5': 'spor ', |
|
'LABEL_6': 'teknoloji '} |
|
|
|
``` |
|
## Citation |
|
Please cite the following papers if needed |
|
``` |
|
@misc{yildirim2024finetuning, |
|
title={Fine-tuning Transformer-based Encoder for Turkish Language Understanding Tasks}, |
|
author={Savas Yildirim}, |
|
year={2024}, |
|
eprint={2401.17396}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
|
|
|
|
|
|
@book{yildirim2021mastering, |
|
title={Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques}, |
|
author={Yildirim, Savas and Asgari-Chenaghlu, Meysam}, |
|
year={2021}, |
|
publisher={Packt Publishing Ltd} |
|
} |
|
|
|
``` |
|
|
|
## Data |
|
The following Turkish benchmark dataset is used for fine-tuning |
|
|
|
https://www.kaggle.com/savasy/ttc4900 |
|
|
|
## Quick Start |
|
|
|
Bewgin with installing transformers as follows |
|
> pip install transformers |
|
|
|
``` |
|
# Code: |
|
# import libraries |
|
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AutoModelForSequenceClassification |
|
tokenizer= AutoTokenizer.from_pretrained("savasy/bert-turkish-text-classification") |
|
|
|
# build and load model, it take time depending on your internet connection |
|
model= AutoModelForSequenceClassification.from_pretrained("savasy/bert-turkish-text-classification") |
|
|
|
# make pipeline |
|
nlp=pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
|
|
# apply model |
|
nlp("bla bla") |
|
# [{'label': 'LABEL_2', 'score': 0.4753005802631378}] |
|
|
|
code_to_label={ |
|
'LABEL_0': 'dunya ', |
|
'LABEL_1': 'ekonomi ', |
|
'LABEL_2': 'kultur ', |
|
'LABEL_3': 'saglik ', |
|
'LABEL_4': 'siyaset ', |
|
'LABEL_5': 'spor ', |
|
'LABEL_6': 'teknoloji '} |
|
|
|
code_to_label[nlp("bla bla")[0]['label']] |
|
# > 'kultur ' |
|
``` |
|
|
|
## How the model was trained |
|
|
|
``` |
|
|
|
## loading data for Turkish text classification |
|
import pandas as pd |
|
# https://www.kaggle.com/savasy/ttc4900 |
|
df=pd.read_csv("7allV03.csv") |
|
df.columns=["labels","text"] |
|
df.labels=pd.Categorical(df.labels) |
|
|
|
traind_df=... |
|
eval_df=... |
|
|
|
# model |
|
from simpletransformers.classification import ClassificationModel |
|
import torch,sklearn |
|
|
|
model_args = { |
|
"use_early_stopping": True, |
|
"early_stopping_delta": 0.01, |
|
"early_stopping_metric": "mcc", |
|
"early_stopping_metric_minimize": False, |
|
"early_stopping_patience": 5, |
|
"evaluate_during_training_steps": 1000, |
|
"fp16": False, |
|
"num_train_epochs":3 |
|
} |
|
|
|
model = ClassificationModel( |
|
"bert", |
|
"dbmdz/bert-base-turkish-cased", |
|
use_cuda=cuda_available, |
|
args=model_args, |
|
num_labels=7 |
|
) |
|
model.train_model(train_df, acc=sklearn.metrics.accuracy_score) |
|
``` |
|
For other training models please check https://simpletransformers.ai/ |
|
|
|
|
|
For the detailed usage of Turkish Text Classification please check [python notebook](https://github.com/savasy/TurkishTextClassification/blob/master/Bert_base_Text_Classification_for_Turkish.ipynb) |
|
|