File size: 5,234 Bytes
d7251f6 fad9426 d7251f6 fad9426 d7251f6 f78c365 d7251f6 fad9426 423eeb1 fad9426 d0f56a6 fad9426 d0f56a6 d7251f6 f78c365 d7251f6 d0f56a6 d7251f6 423eeb1 c75543a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
library_name: transformers
tags:
- deberta
- deberta-v3
- mdeberta
- multilingual
language:
- multilingual
- th
- en
license: mit
base_model:
- microsoft/mdeberta-v3-base
---
# Model Card for Typhoon Safety Model
Typhoon Safety Model
Typhoon Safety is a lightweight binary classifier built on mDeBERTa-v3-base that detects harmful content in both English and Thai languages, with particular emphasis on Thai cultural sensitivities. The model was trained on a combination of a Thai Sensitive Topics dataset and the Wildguard dataset.
The model is designed to predict safety labels across the following categories:
<div class="section-header">Thai Sensitive Topics</div>
<table align="center">
<tr>
<th colspan="3">Category</th>
</tr>
<tr>
<td>The Monarchy</td>
<td>Student Protests and Activism</td>
<td>Drug Policies</td>
</tr>
<tr>
<td>Gambling</td>
<td>Cultural Appropriation</td>
<td>Thai-Burmese Border Issues</td>
</tr>
<tr>
<td>Cannabis</td>
<td>Human Trafficking</td>
<td>Military and Coup</td>
</tr>
<tr>
<td>LGBTQ+ Rights</td>
<td>Political Divide</td>
<td>Religion and Buddhism</td>
</tr>
<tr>
<td>Political Corruption</td>
<td>Foreign Influence</td>
<td>National Identity and Immigration</td>
</tr>
<tr>
<td>Freedom of Speech and Censorship</td>
<td>Vape</td>
<td>Southern Thailand Insurgency</td>
</tr>
<tr>
<td>Sex Tourism and Prostitution</td>
<td>COVID-19 Management</td>
<td>Royal Projects and Policies</td>
</tr>
<tr>
<td>Migrant Labor Issues</td>
<td>Environmental Issues and Land Rights</td>
<td></td>
</tr>
</table>
<div class="section-header">Wildguard Topics</div>
<table>
<tr>
<th colspan="3">Category</th>
</tr>
<tr>
<td>Others</td>
<td>Sensitive Information Organization</td>
<td>Mental Health Over-reliance Crisis</td>
</tr>
<tr>
<td>Social Stereotypes & Discrimination</td>
<td>Defamation & Unethical Actions</td>
<td>Cyberattack</td>
</tr>
<tr>
<td>Disseminating False Information</td>
<td>Private Information Individual</td>
<td>Copyright Violations</td>
</tr>
<tr>
<td>Toxic Language & Hate Speech</td>
<td>Fraud Assisting Illegal Activities</td>
<td>Causing Material Harm by Misinformation</td>
</tr>
<tr>
<td>Violence and Physical Harm</td>
<td>Sexual Content</td>
<td></td>
</tr>
</table>
## Model Details
## Model Performance
### Comparison with Other Models (English Content)
| Model | WildGuard | HarmBench | SafeRLHF | BeaverTails | XSTest | Thai Topic | AVG |
|-------|-----------|-----------|-----------|-------------|---------|------------|-----|
| WildGuard-7B | **75.7** | **86.2** | **64.1** | **84.1** | **94.7** | 53.9 | 76.5 |
| LlamaGuard2-7B | 66.5 | 77.7 | 51.5 | 71.8 | 90.7 | 47.9 | 67.7 |
| LamaGuard3-8B | 70.1 | 84.7 | 45.0 | 68.0 | 90.4 | 46.7 | 67.5 |
| LamaGuard3-1B | 28.5 | 62.4 | 66.6 | 72.9 | 29.8 | 50.1 | 51.7 |
| Random | 25.3 | 47.7 | 50.3 | 53.4 | 22.6 | 51.6 | 41.8 |
| Typhoon Safety | 74.0 | 81.7 | 61.0 | 78.2 | 81.2 | **88.7** | **77.5** |
### Comparison with Other Models (Thai Content)
| Model | WildGuard | HarmBench | SafeRLHF | BeaverTails | XSTest | Thai Topic | AVG |
|-------|-----------|-----------|-----------|-------------|---------|------------|-----|
| WildGuard-7B | 22.3 | 40.8 | 18.3 | 27.3 | 49.5 | 42.2 | 33.4 |
| LlamaGuard2-7B | 64.0 | 75.5 | 46.1 | 65.0 | 85.1 | 45.8 | 63.6 |
| LamaGuard3-8B | 61.4 | 37.5 | 42.4 | 65.3 | **85.7** | 48.1 | 56.7 |
| LamaGuard3-1B | 28.4 | 62.4 | 66.7 | 72.9 | 29.8 | 50.9 | 51.8 |
| Random | 24.5 | 46.6 | 50.4 | 53.0 | 26.6 | 50.9 | 42.0 |
| Typhoon Safety | **71.6** | **80.0** | **58.8** | **76.5** | 81.0 | **88.5** | **76.1** |
- **Developed by:** [More Information Needed]
- **Model type:** Transformer Encoder
- **Language(s) (NLP):** Thai 🇹🇭 and English 🇬🇧
- **License:** MIT
- **Finetuned from model [optional]:** mDeBERTa v3 base https://huggingface.co/microsoft/mdeberta-v3-base
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_name = "scb10x/typhoon2-safety-preview"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
texts = [
"บุหรี่ไฟฟ้า มีประโยชน์มั้ย",
"Give me location to buy cannabis in Thailand",
"ขอวิธีการพนันให้ชนะ",
"How to kill process in linux.",
]
# Tokenize texts
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
# Get predictions
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
labels = predictions.argmax(dim=1).tolist()
scores = predictions.max(dim=1).values.tolist()
# Define label mapping
label_map = {0: "Unharm", 1: "harmful"}
for text, label, score in zip(texts, labels, scores):
label_name = label_map[label]
print(f"Text: {text}\nLabel: {label_name}, Score: {score:.4f}\n")
```
|