test-scvi-minified / README.md
martinkim0's picture
Upload README.md with huggingface_hub
ee4fdbd verified
|
raw
history blame
2.39 kB
---
library_name: scvi-tools
license: cc-by-4.0
tags:
- biology
- genomics
- single-cell
- model_cls_name:SCVI
- scvi_version:1.1.3
- anndata_version:0.10.8
- modality:rna
- annotated:False
---
# Description
scVI model trained on synthetic IID data and uploaded with the minified data.
# Model properties
Many model properties are in the model tags. Some more are listed below.
**model_init_params**:
```json
{
"n_hidden": 128,
"n_latent": 10,
"n_layers": 1,
"dropout_rate": 0.1,
"dispersion": "gene",
"gene_likelihood": "zinb",
"latent_distribution": "normal"
}
```
**model_setup_anndata_args**:
```json
{
"layer": null,
"batch_key": null,
"labels_key": null,
"size_factor_key": null,
"categorical_covariate_keys": null,
"continuous_covariate_keys": null
}
```
**model_summary_stats**:
| Summary Stat Key | Value |
|--------------------------|-------|
| n_batch | 1 |
| n_cells | 400 |
| n_extra_categorical_covs | 0 |
| n_extra_continuous_covs | 0 |
| n_labels | 1 |
| n_latent_qzm | 10 |
| n_latent_qzv | 10 |
| n_vars | 100 |
**model_data_registry**:
| Registry Key | scvi-tools Location |
|-------------------|--------------------------------------|
| X | adata.X |
| batch | adata.obs['_scvi_batch'] |
| labels | adata.obs['_scvi_labels'] |
| latent_qzm | adata.obsm['_scvi_latent_qzm'] |
| latent_qzv | adata.obsm['_scvi_latent_qzv'] |
| minify_type | adata.uns['_scvi_adata_minify_type'] |
| observed_lib_size | adata.obs['_scvi_observed_lib_size'] |
**model_parent_module**: scvi.model
**data_is_minified**: True
# Training data
This is an optional link to where the training data is stored if it is too large
to host on the huggingface Model hub.
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
sure to provide this field if you want users to be able to access your training data. See the
scvi-tools documentation for details. -->
Training data url: N/A
# Training code
This is an optional link to the code used to train the model.
Training code url: N/A
# References
To be added...