BERTopic_mincevicius

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("sdantonio/BERTopic_mincevicius")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 3
  • Number of training documents: 10133
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 vyriausybe - paskelbe - pries - rusijos - ukrainos 8779 0_vyriausybe_paskelbe_pries_rusijos
1 vyriausybe - pries - visis - rusijos - ukrainos 1336 1_vyriausybe_pries_visis_rusijos
2 republics - pedophiles - awakenedspecies - booster - wins 18 2_republics_pedophiles_awakenedspecies_booster

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.0
  • Python: 3.10.12
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.